scholarly journals Quantification of slope displacement rates using acoustic emission monitoring

2007 ◽  
Vol 44 (8) ◽  
pp. 966-976 ◽  
Author(s):  
N. Dixon ◽  
M. Spriggs

In soil slopes, developing shear surfaces generate acoustic emission (AE). The authors have previously proposed the use of active waveguides for monitoring the stability of such slopes. Active waveguides consist of a steel tube installed in a preformed borehole through a slope with coarse-grained soil backfill placed in the annulus around the tube. Deformation of the host soil generates AE in the active waveguide. Field trials of this system reported previously have shown that AE rates are linked to slope deformation rates. This paper extends the study by detailing a method for quantifying slope movement rates using an active waveguide. A series of laboratory experiments are presented and used to define the relationship between AE event count rate and displacement rate. The method was shown to differentiate rates within an order of magnitude, which is consistent with standard landslide movement classification (i.e., 1–0.001 mm/min), using a relationship derived between the gradient of the event count rate with time and the deformation rate. In addition, it was possible to detect a change in displacement rate within 2 min of it occurring even at very slow rates (i.e., 0.0018 mm/min). Knowledge of changes in displacement rate is important in situations where slope movements are suddenly triggered or displacements accelerate in response to a destabilizing event. Field trials of a real-time AE monitoring system are currently in progress to compare performance against traditional instrumentation.

2015 ◽  
Vol 52 (4) ◽  
pp. 413-425 ◽  
Author(s):  
Alister Smith ◽  
Neil Dixon

Acoustic emission (AE) has become an established approach to monitor stability of soil slopes. However, the challenge has been to develop strategies to interpret and quantify deformation behaviour from the measured AE. AE monitoring of soil slopes commonly utilizes an active waveguide that is installed in a borehole through the slope and comprises a metal waveguide rod or tube with a granular backfill surround. When the host slope deforms, the column of granular backfill also deforms and this generates AE that can propagate along the waveguide. Results from the commissioning of dynamic shear apparatus used to subject full-scale active waveguide models to simulated slope movements are presented. The results confirm that AE rates generated are proportional to the rate of deformation, and the coefficient of proportionality that defines the relationship has been quantified (e.g., 4.4 × 105 for the angular gravel examined). It is demonstrated that slope velocities can be quantified continuously in real time through monitoring active waveguide–generated AE during a slope failure simulation. The results show that the technique can quantify landslide velocity to better than an order of magnitude (i.e., consistent with standard landslide movement classification) and can therefore be used to provide an early warning of slope instability through detecting and quantifying accelerations of slope movement.


Author(s):  
Rudranarayan M. Mukherjee ◽  
Paul Crozier ◽  
Kurt S. Anderson

This is the second paper in a series of two papers on using multibody dynamics algorithms and methods for coarse grained molecular dynamics simulations. In the previous paper, the theoretical discussions on this topic have been presented. This paper presents results obtained from simulating several biomolecular and bulk materials using multibody dynamics algorithms. The systems studied include water boxes, alkane chains, alanine dipeptide and carboxyl terminal fragments of Calmodulin, Ribosomal, and Rhodopsin proteins. The atomistic representations of these systems include several thousand degrees of freedom and results of several nano-second simulations of these systems are presented. The stability and validity of the simulations are studied through conservation of energy, thermodynamics properties and conformational analysis. In these simulations, a speed up of an order of magnitude is realized for conservative error bounds. A discussion is presented on the open-source software developed to facilitate future research using multibody dynamics with molecular dynamics.


2018 ◽  
Vol 36 (6) ◽  
pp. 1609-1628 ◽  
Author(s):  
Chengzheng Cai ◽  
Feng Gao ◽  
Yugui Yang

Liquid nitrogen is a type of super-cryogenic fluid, which can cause the reservoir temperature to decrease significantly and thereby induce formation rock damage and cracking when it is injected into the wellbore as fracturing fluid. An experimental set-up was designed to monitor the acoustic emission signals of coal during its contact with cryogenic liquid nitrogen. Ultrasonic and tensile strength tests were then performed to investigate the effect of liquid nitrogen cooling on coal cracking and the changes in mechanical properties thereof. The results showed that acoustic emission phenomena occurred immediately as the coal sample came into contact with liquid nitrogen. This indicated that evident damage and cracking were induced by liquid nitrogen cooling. During liquid nitrogen injection, the ring-down count rate was high, and the cumulative ring-down counts also increased rapidly. Both the ring-down count rate and the cumulative ring-down counts during liquid nitrogen injection were much greater than those in the post-injection period. Liquid nitrogen cooling caused the micro-fissures inside the coal to expand, leading to a decrease in wave velocity and the deterioration in mechanical strength. The wave velocity, which was measured as soon as the sample was removed from the liquid nitrogen (i.e. the wave velocity was recorded in the cooling state), decreased by 14.46% on average. As the cryogenic samples recovered to room temperature, this value increased to 18.69%. In tensile strength tests, the tensile strengths of samples in cooling and cool-treated states were (on average) 17.39 and 31.43% less than those in initial state. These indicated that both during the cooling and heating processes, damage and cracking were generated within these coal samples, resulting in the acoustic emission phenomenon as well as the decrease in wave velocity and tensile strength.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Dianyu Yu ◽  
Yan Chen ◽  
Xing Chen ◽  
Yunyan Huang ◽  
Liqi Wang ◽  
...  

Abstract This research focuses on the use of protein-polyphenol complex and protein-polyphenol: polysaccharide complexes to prepare oleogels through an emulsion-templated approach. Electrolysis soy protein isolate (ESPI) could be effectively adsorbed on the surface of a single-layer emulsion to increase the particle size. The order of the negative charges of the emulsion after adding polysaccharides was xanthan gum (XG)> pectin> carboxymethyl cellulose (CMC). Rheological behavior showed that the stability of the double-layer emulsions increased, and the viscoelasticity increased around one order of magnitude with the addition of polysaccharides. The oil binding capacity (OBC) of the oleogel prepared by adding polysaccharides increased to more than 97%. The peroxide value (PV) and anisidine value (AV) of XG oleogel were the minimum values in all samples. The AV and POV were within the regulatory limits of China after storage for 21 days. This provides a reference to design of ESPI-based oleogel for different applications.


2018 ◽  
Vol 35 (14) ◽  
pp. 2507-2508 ◽  
Author(s):  
Aleix Lafita ◽  
Pengfei Tian ◽  
Robert B Best ◽  
Alex Bateman

Abstract Summary Proteins with highly similar tandem domains have shown an increased propensity for misfolding and aggregation. Several molecular explanations have been put forward, such as swapping of adjacent domains, but there is a lack of computational tools to systematically analyze them. We present the TAndem DOmain Swap Stability predictor (TADOSS), a method to computationally estimate the stability of tandem domain-swapped conformations from the structures of single domains, based on previous coarse-grained simulation studies. The tool is able to discriminate domains susceptible to domain swapping and to identify structural regions with high propensity to form hinge loops. TADOSS is a scalable method and suitable for large scale analyses. Availability and implementation Source code and documentation are freely available under an MIT license on GitHub at https://github.com/lafita/tadoss. Supplementary information Supplementary data are available at Bioinformatics online.


2015 ◽  
Vol 47 (4) ◽  
pp. 454-460 ◽  
Author(s):  
Woonggi Hwang ◽  
Seunggi Bae ◽  
Jaeseong Kim ◽  
Sungsik Kang ◽  
Nogwon Kwag ◽  
...  

Author(s):  
Denghong Xiao ◽  
Tian He ◽  
Xiandong Liu ◽  
Yingchun Shan

A novel approach of locating damage in welded joints is proposed based on acoustic emission (AE) beamforming, which is particularly applicable to complex plate-like structures. First, five AE sensors used to obtain AE signals generated from damage are distributed on the surface of the structure in a uniform line array. Then the beamforming method is adopted to detect the weld joints in the area of interest rather than all the points of the whole structure, and to determine the location and obtain information of AE sources. In order to study the ability of the proposed method more comprehensively, a rectangular steel tube with welded joints is taken for the pencil-lead-broken test. The localization results indicate that the proposed localization approach can effectively localize the failure welded joints. This improvement greatly reduces the cost of computation and also improves the efficiency of localization work compared with the traditional beamforming.


Author(s):  
Osama M. Jadaan ◽  
K. C. Liu ◽  
H. Pih

Abstract Progressive damage due to tension-tension cyclic fatigue loading for three distinct ceramic materials was evaluated using the acoustic emission (AE) technique. The objective of this study was to determine the capabilities of the AE method to detect the imminence of failure and to locate potential fracture sites. Results indicated that the AE technique was capable of predicting failure by showing an increase in energy/count rate prior to failure. Although potential fracture sites can be identified, exact location of the final fracture site can be known only when catastrophic failure takes place.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 794 ◽  
Author(s):  
Osman El Atwani ◽  
Kaan Unal ◽  
William Streit Cunningham ◽  
Saryu Fensin ◽  
Jonathan Hinks ◽  
...  

The use of ultrafine and nanocrystalline materials is a proposed pathway to mitigate irradiation damage in nuclear fusion components. Here, we examine the radiation tolerance of helium bubble formation in 85 nm (average grain size) nanocrystalline-equiaxed-grained tungsten and an ultrafine tungsten-TiC alloy under extreme low energy helium implantation at 1223 K via in-situ transmission electron microscope (TEM). Helium bubble damage evolution in terms of number density, size, and total volume contribution to grain matrices has been determined as a function of He+ implantation fluence. The outputs were compared to previously published results on severe plastically deformed (SPD) tungsten implanted under the same conditions. Large helium bubbles were formed on the grain boundaries and helium bubble damage evolution profiles are shown to differ among the different materials with less overall damage in the nanocrystalline tungsten. Compared to previous works, the results in this work indicate that the nanocrystalline tungsten should possess a fuzz formation threshold more than one order of magnitude higher than coarse-grained tungsten.


2020 ◽  
Vol 90 (2) ◽  
pp. 250-267 ◽  
Author(s):  
Sergio A. Marenssi ◽  
Carlos O. Limarino ◽  
Laura J. Schencman ◽  
Patricia L. Ciccioli

ABSTRACT Two episodes of lacustrine sedimentation, separated by an erosional surface and fluvial sedimentation, took place in the southern part of the broken foreland Vinchina basin (NW Argentina) between 11 and 5 Ma. The lacustrine deposits, 768 and 740 meters thick, are recorded in the upper part of the Vinchina Formation (“Vinchina lake”) and the lower part of the Toro Formation (“Toro Negro lake”) respectively. According to sedimentological features, four sedimentary facies associations (FAs) are recognized in the lacustrine deposits: 1) thinly laminated mudstones facies association (FA 1), 2) coarsening- and thickening-upward muddy to sandy cycles (FA 2), 3) medium- to coarse-grained sandstones (FA 3), and 4) mudstones, sandstones, and oolitic limestones (FA 4). Altogether, these facies correspond to ephemeral, shallow, lacustrine systems including saline mudflats. The total thickness of each lacustrine interval, the thickness of the individual cycles and their lithology, and the overall aggradational facies arrangement suggest that both lakes developed during underfilled stages of the basin. The coarsening-upward cycles can be regarded as lacustrine parasequences representing cyclic episodes of expansion and contraction of the lake, but unlike marine parasequences these cycles do not correlate to water depth. The development of lacustrine conditions and continuous base-level rise, together with the coeval southward-directed paleoflow indicators, suggest axial drainages and that the basin was externally closed (endorheic) at that time. The large thicknesses of each lacustrine interval also points to high accommodation in the southern part of the Vinchina basin during these times. Lake filling cycles are one order of magnitude thicker than lake depth, so we postulate that subsidence (tectonic) and rise of the spill point (geomorphology) increased accommodation but not water depth. Thus, unlike marine parasequences, the analyzed coarsening-upward cycles do not correlate to water depth, but rather they are controlled by more complex basinal accommodation processes. We hypothesize that the coeval uplift of the Umango and Espinal basement block to the south, coupled with the initial doming of the Sierra de Los Colorados to the east, may have generated the damming of the southward-directed drainage and a zone of maximum accommodation, then controlling the location of the two lakes and the preservation of their thick sedimentary records. Therefore, localized accommodation was enhanced by a combination of tectonic subsidence and topographic growth. The two lacustrine intervals and the intervening fluvial deposits record changing contributions from axial to transverse drainages and different cycles of closed and open conditions in the basin. A low-frequency, closed to open and back to closed (axial to transverse and return to axial drainage) basin evolution, is envisaged by the development of the two lakes (closed stages) and the erosional surface followed by the interval of fluvial sedimentation that separates them (open stage). In addition, several high-frequency lake fluctuations (expansion–contraction) are represented by the coarsening-upward cycles within each lacustrine interval. The thick lacustrine intervals and their intermediate incision surfaces record cyclic filling and re-excavation stages and localized episodes of increased subsidence in the Vinchina basin, which seem to be a common feature of tectonically active broken foreland basins.


Sign in / Sign up

Export Citation Format

Share Document