OPTIMIZATION OF MECHANICAL PROPERTIES OF E-GLASS WOVEN FABRIC COMPOSITE

2017 ◽  
Vol 41 (3) ◽  
pp. 375-386 ◽  
Author(s):  
N. Azhaguvel ◽  
S. Charles ◽  
M. Senthilkumar

Manufacturing of composite material has been an extensive area of research as they have high strength-to-weight ratio that are equivalent or superior to many metallic materials. This paper describes the preparation of E-Glass (woven fabric) Fiber Reinforced Polymer Composite (GFRP) with different fiber mat material, orientation and resin. The purpose of this paper is to investigate the influence of the process parameters on the mechanical properties of GFRP composite using Taguchi experimental design in combination with Grey Relational Analysis (GRA). The conclusion revealed that fiber orientation and resin were the most influential factor on the mechanical properties, respectively. It is observed that the optimum properties were obtained at 400 fabric mat, polyester resin, 45°/–45°orientation.

Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2136
Author(s):  
Sharizal Ahmad Sobri ◽  
Robert Heinemann ◽  
David Whitehead

Carbon fibre reinforced polymer composites (CFRPs) can be costly to manufacture, but they are typically used anywhere a high strength-to-weight ratio and a high steadiness (rigidity) are needed in many industrial applications, particularly in aerospace. Drilling composites with a laser tends to be a feasible method since one of the composite phases is often in the form of a polymer, and polymers in general have a very high absorption coefficient for infrared radiation. The feasibility of sequential laser–mechanical drilling for a thick CFRP is discussed in this article. A 1 kW fibre laser was chosen as a pre-drilling instrument (or initial stage), and mechanical drilling was the final step. The sequential drilling method dropped the overall thrust and torque by an average of 61%, which greatly increased the productivity and reduced the mechanical stress on the cutting tool while also increasing the lifespan of the bit. The sequential drilling (i.e., laser 8 mm and mechanical 8 mm) for both drill bits (i.e., 2- and 3-flute uncoated tungsten carbide) and the laser pre-drilling techniques has demonstrated the highest delamination factor (SFDSR) ratios. A new laser–mechanical sequence drilling technique is thus established, assessed, and tested when thick CFRP composites are drilled.


Author(s):  
Kaushal Arrawatia ◽  
Kedar Narayan Bairwa ◽  
Raj Kumar

Polymer composites have outstanding qualities such as high strength, flexibility, stiffness, and lightweight. Currently, research is being performed to develop innovative polymer composites that may be used in many operational situations and contain a variety of fibre and filler combinations. Banana fibre has low density compared to glass fibre and it is a lingo-cellulosic fibre having relatively good mechanical properties compared to glass fibre. Because of their outstanding qualities, banana fibre reinforced polymer composites are now widely used in various industries. The primary goal of this study is to determine the effect of the wt.% of banana fibre, the wt.% of SiC, and the wt.% of Al2O3 in banana fibre reinforcement composites on the mechanical and physical properties of banana fibre reinforcement composites. Tensile strength and flexural strength of unfilled banana fibre epoxy composite increased with the increase in wt. of banana fibre from 0 wt.% to 12 wt.%. Further, an increase in wt.% banana fibre drop in mechanical property was observed. It has been concluded from the study that the variation in percentage weight of filler material with fixed amount (12 wt.%) of banana fibre affects the mechanical properties of filled banana reinforcement composites. Optimum mechanical properties were obtained for BHEC5 (72 wt.% Epoxy + Hardener, 12 wt.% banana fibre and 16 wt.% Al2O3).


2017 ◽  
Vol 867 ◽  
pp. 41-47 ◽  
Author(s):  
Chitra Umachitra ◽  
N.K. Palaniswamy ◽  
O.L. Shanmugasundaram ◽  
P.S. Sampath

Natural fibers have been used to reinforce materials in many composite structures. Many types of natural fibers have been investigated including flax, hemp, ramie, sisal, abaca, banana etc., due to the advantage that they are light weight, renewable resources and have marketing appeal. These agricultural wastes can also be used to prepare fiber reinforced polymer hybrid composites in various combinations for commercial use. Application of composite materials in structural applications has presented the need for the engineering analysis. The present work focuses on the fabrication of polymer matrix composites by using natural fibers like banana and cotton which are abundant in nature and analysing the effect of mechanical properties of the composites on different surface treatments on the fabric. The effect of various surface treatments (NaOH, SLS, KMnO4) on the mechanical properties namely tensile, flexural and impact was analyzed and are discussed in this project. Analysing the material characteristics of the compression moulded composites; their results were measured on sections of the material to make use of the natural fiber reinforced polymer composite material for automotive seat shell manufacturing.


Author(s):  
VIJAY KUMAR MEENA ◽  
PARVEEN KALRA ◽  
RAVINDRA KUMAR SINHA

Additive manufacturing (AM) of titanium (Ti) alloys has always fascinated researchers owing to its high strength to weight ratio, biocompatibility, and anticorrosive properties, making Ti alloy an ideal candidate for medical applications. The aim of this paper is to optimize the AM parameters, such as Laser Power (LP), Laser Scan Speed (LSS), and Hatch Space (HS), using Analysis of Variance (ANOVA) and Grey Relational analysis (GRA) for mechanical and surface characteristics like hardness, surface roughness, and contact angle, of Ti6Al4V ELI considering medical implant applications. The input parameters are optimized to have optimum hardness, surface roughness and hydrophilicity required for medical implants.


2020 ◽  
Vol 10 (3) ◽  
pp. 281-292 ◽  
Author(s):  
Saurabh Dewangan ◽  
Suraj Kumar Mohapatra ◽  
Abhishek Sharma

PurposeTitanium (Ti) alloys are in high demand in manufacturing industries all over the world. The property like high strength to weight ratio makes Ti alloys highly recommended for aerospace industries. Ti alloys possess good weldability, and therefore, they were extensively investigated with regard to strength and metallurgical properties of welded joint. This study aims to deal with the analysis of strength and microstructural changes in Ti-6Al-4V (Grade 5) alloy after tungsten inert gas (TIG) welding.Design/methodology/approachTwo pair of Ti alloy plates were welded in two different voltages, i.e. 24 and 28 V, with keeping the current constant, i.e. 80 A It was a random selection of current and voltage values to check the performance of welded material. Both the welded plates were undergone through some mechanical property analysis like impact test, tensile test and hardness test. In addition, the microstructure of the welded joints was also analyzed.FindingsIt was found that hardness and tensile properties gets improved with an increment in voltage, but this effect was reverse for impact toughness. A good corroboration between microstructure and mechanical properties, such as tensile strength, hardness and toughness, was reported in this work. Heat distribution in both the welded plates was simulated through ANSYS software to check the temperature contour in the plates.Originality/valueA good corroboration between microstructure and mechanical properties, such as tensile strength, hardness and toughness, was reported in this study.


2018 ◽  
Vol 877 ◽  
pp. 20-25
Author(s):  
P.K. Mandal

The cast Al-Zn-Mg 7000 alloy has become one of the most potential structural materials in many engineering fields such as aircraft body, automotive casting due to their high strength to weight ratio, strong age hardening ability, competitive weight savings, attractive mechanical properties and improvement of thermal properties. The cast aluminium alloy has been modified of surface layer through a solid-state technique is called friction stir process (FSP). But basic principle has been followed by friction stir welding (FSW). This process can be used to locally refine microstructures and eliminate casting defects in selected locations, where mechanical properties improvements can enhance component performance and service life. However, some specified process parameters have adopted during experimental works. Those parameters are tool rotation speed (720 rpm), plate traverse speed (80 mm/min), axial force (15 kN), and tool design (i.e., pin height 3.5 mm and pin diameter 3.0 mm), respectively. The main mechanism behind this process likely to axial force and frictional force acting between the tool shoulder and workpiece results in intense heat generation and plastically soften the process material. The specified ratio of rotational speed (720 rpm) to traverse speed (80 mm/min) is considered 9 as low heat input during FSP and its entails low Zn vaporization problem results as higher fracture toughness of aluminium alloy. It is well known that the stirred zone (SZ) consists of refine equiaxed grains produced due to dynamic recrystallization. FSP has been proven to innovatively enhancing of various properties such as formability, hardness and fracture toughness (32.60 MPa√m). The hardness and fracture toughness of double passes AC+FSP aluminium alloy had been investigated by performing Vicker’s hardness measurement and fracture toughness (KIC)(ASTM E-399 standard) tests. Detailed observations with optical microscopy, Vicker’s hardness measurement, SEM, TEM, and DTA analysis have conducted to analyse microstructure and fracture surfaces of double passes FSP aluminium alloy.


Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 117 ◽  
Author(s):  
Chinmay Phutela ◽  
Nesma T. Aboulkhair ◽  
Christopher J. Tuck ◽  
Ian Ashcroft

Ti-6Al-4V is a popular alloy due to its high strength-to-weight ratio and excellent corrosion resistance. Many applications of additively manufactured Ti-6Al-4V using selective laser melting (SLM) have reached technology readiness. However, issues linked with metallurgical differences in parts manufactured by conventional processes and SLM persist. Very few studies have focused on relating the process parameters to the macroscopic and microscopic properties of parts with different size features. Therefore, the aim of this study was to investigate the effect of the size of features on the density, hardness, microstructural evolution, and mechanical properties of Ti-6Al-4V parts fabricated using a fixed set of parameters. It was found that there is an acceptable range of sizes that can be produced using a fixed set of parameters. Beyond a specific window, the relative density decreased. Upon decreasing the size of a cuboid from (5 × 5 × 5 mm) to (1 × 1 × 5 mm), porosity increased from 0.3% to 4.8%. Within a suitable size range, the microstructure was not significantly affected by size; however, a major change was observed outside the acceptable size window. The size of features played a significant role in the variation of mechanical properties. Under tensile loading, decreasing the gauge size, the ultimate and yield strengths deteriorated. This investigation, therefore, presents an understanding of the correlation between the feature size and process parameters in terms of the microscopic and macroscopic properties of Ti-6Al-4V parts manufactured using SLM. This study also highlights the fact that any set of optimized process parameters will only be valid within a specific size window.


Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1459 ◽  
Author(s):  
Xinzhe Min ◽  
Jiwen Zhang ◽  
Chao Wang ◽  
Shoutan Song ◽  
Dong Yang

An externally bonded fiber reinforced polymer (FRP) plate (or sheet) is now widely used in strengthening bending members due to its outstanding properties, such as a high strength to weight ratio, easy operating, corrosion and fatigue resistance. However, the concrete member strengthened by this technology may have a problem with the adhesion between FRP and concrete. This kind of debonding failure can be broadly classified into two modes: (a) plate end debonding at or near the plate end, and (b) intermediate crack-induced debonding (intermediate crack-induced (IC) debonding) near the loading point. The IC debonding, unlike the plate end debonding, still needs a large amount of investigation work, especially for the interface under fatigue load. In this paper, ten single shear pull-out tests were carried out under a static or fatigue load. Different load ranges and load levels were considered, and the debonding growth process was carefully recorded. The experimental results indicate that the load range is one of the main parameters, which determines the debonding growth rate. Moreover, the load level can also play an important role when loaded with the same load range. Finally, a new prediction model of the fatigue debonding growth rate was proposed, and has an excellent agreement with the experimental results.


2015 ◽  
Vol 766-767 ◽  
pp. 90-95
Author(s):  
G. Godwin ◽  
K. Umanath

Polymeric materials reinforced with synthetic fibres such as glass provide advantage of high stiffness and high strength to weight ratio. Despite these advantages, the widespread use of synthetic fibre-reinforced polymer composite has a tendency to decline because of their high-initial cost and most importantly their adverse environmental impact. In this work, four different composites are prepared with untreated coconut fibres, NaOH mercerized coconut fibres, KOH mercerized coconut fibres and CSM glass fibres. A lot of studies are done earlier on NaOH mercerized coconut fibre composites. But, no studies are done specifically for KOH mercerized coconut fibre composites. So, KOH mercerized coconut fibre composites are prepared in this study. General purpose polyester resin is used for preparing all the compsites. The mechanical properties of composites are studied using the flexural test, impact test and tensile test. The mechanical properties of KOH mercerized coconut fibre composites are studied and compared with the mechanical properties of NaOH mercerized coconut fibre composites, untreated coconut fibre composites and CSM glass fibre composites.


Author(s):  
Omer R EL Zaroug, John P Forth, Jianqiao YE

The use of non-metallic fibre reinforced polymer reinforcement as an alternative to steel reinforcement in concrete is gaining acceptance mainly due to its high corrosion resistance. High strength-to-weight ratio, high stiffness-to-weight ratio and ease of handling and fabrication are added advantages. Other benefits are that they do not influence to magnetic fields and radio frequencies and they are thermally non-conductive. However, the stress-strain relationship for Glass fibre reinforced polymer reinforcement (GFRP) is linear up to rupture when the ultimate strength is reached. Unlike steel reinforcing bars, GFRP rebars do not undergo yield deformation or strain hardening before rupture. Also, GFRP reinforcement possesses a relatively low elastic modulus of elasticity compared with that of steel. As a consequence, for GFRP reinforced sections, larger deflections and crack widths are expected than the ones obtained from equivalent steel reinforced sections for the same load. This investigation provides details of the numerical analysis of GFRP reinforced slabs loaded mechanically using the commercial finite element program (DIANA). To prove the validity of the proposed finite element approach, a comparison is made with experimental test results obtained from full-size slabs. The comparisons are made on the basis of first cracking load, load-deflection response at midspan, cracking patterns, mode of failure and loads at failure. Using the DIANA software for the analysis of GFRP reinforced slabs under mechanical load is possible and can produce acceptable predictions throughout the load range in terms of final load and crack patterns. However, DIANA overestimated the first cracking load and tended to over predict the experimental deflections.  


Sign in / Sign up

Export Citation Format

Share Document