The effect of climatic factors on the radial growth of Japanese ash in northern Hokkaido, Japan

1996 ◽  
Vol 26 (11) ◽  
pp. 2052-2055 ◽  
Author(s):  
K. Yasue ◽  
R. Funada ◽  
T. Kondo ◽  
O. Kobayashi ◽  
K. Fukazawa

The influence of climate on the radial growth of Japanese ash (Fraxinusmandshurica Rupr. var. japonica Maxim.) in northern Hokkaido, Japan, was investigated. Fifteen trees were selected and ring widths were measured. Standardization and autoregressive modeling were applied to the series of ring widths for isolation of the climatic signal. A response function was calculated for the relationship between residual chronology and monthly temperature and precipitation. In the season that preceded the growth, December precipitation is negatively correlated with ring width. During the growing season, May temperature is negatively correlated with ring width, while both temperature and precipitation in July are positively correlated with ring width. The results reveal the potential usefulness of Japanese ash for reconstruction of past climate in Hokkaido. The chronology of Japanese ash contributes to a development of a tree-ring network in Japan that is still sparse.

2021 ◽  
Vol 12 ◽  
Author(s):  
Domen Arnič ◽  
Jožica Gričar ◽  
Jernej Jevšenak ◽  
Gregor Božič ◽  
Georg von Arx ◽  
...  

European beech (Fagus sylvatica L.) adapts to local growing conditions to enhance its performance. In response to variations in climatic conditions, beech trees adjust leaf phenology, cambial phenology, and wood formation patterns, which result in different tree-ring widths (TRWs) and wood anatomy. Chronologies of tree ring width and vessel features [i.e., mean vessel area (MVA), vessel density (VD), and relative conductive area (RCTA)] were produced for the 1960–2016 period for three sites that differ in climatic regimes and spring leaf phenology (two early- and one late-flushing populations). These data were used to investigate long-term relationships between climatic conditions and anatomical features of four quarters of tree-rings at annual and intra-annual scales. In addition, we investigated how TRW and vessel features adjust in response to extreme weather events (i.e., summer drought). We found significant differences in TRW, VD, and RCTA among the selected sites. Precipitation and maximum temperature before and during the growing season were the most important climatic factors affecting TRW and vessel characteristics. We confirmed differences in climate-growth relationships between the selected sites, late flushing beech population at Idrija showing the least pronounced response to climate. MVA was the only vessel trait that showed no relationship with TRW or other vessel features. The relationship between MVA and climatic factors evaluated at intra-annual scale indicated that vessel area in the first quarter of tree-ring were mainly influenced by climatic conditions in the previous growing season, while vessel area in the second to fourth quarters of tree ring width was mainly influenced by maximum temperature and precipitation in the current growing season. When comparing wet and dry years, beech from all sites showed a similar response, with reduced TRW and changes in intra-annual variation in vessel area. Our findings suggest that changes in temperature and precipitation regimes as predicted by most climate change scenarios will affect tree-ring increments and wood structure in beech, yet the response between sites or populations may differ.


2021 ◽  
Author(s):  
Marina Fonti ◽  
Olga Churakova (Sidorova) ◽  
Ivan Tychkov

<p>Air temperature increase and change in precipitation regime have a significant impact on northern forests leading to the ambiguous consequences due to the complex interaction between the ecosystem plant components and permafrost. One of the major interests in such circumstances is to understand how tree growth of the main forest species of the Siberian North will change under altering climatic conditions. In this work, we applied the process-based Vaganov-Shashkin model (VS - model) of tree growth in order to estimate the daily impact of climatic conditions on tree-ring width of larch trees in northeastern Yakutia (Larix cajanderi Mayr.) and eastern Taimyr (Larix gmelinii Rupr. (Rupr.) for the period 1956-2003, and to determine the extent to which the interaction of climatic factors (temperature and precipitation) is reflected in the tree-ring anatomical structure. Despite the location of the study sites in the harsh conditions of the north, and temperature as the main limiting factor, it was possible to identify a period during the growing season when tree growth was limited by lack of soil moisture. The application of the VS-model for the studied regions allowed establishing in which period of the growing season the water stress is most often manifest itself, and how phenological phases (beginning, cessation, and duration of larch growth) vary among the years.</p><p>The research was funded by RFBR, Krasnoyarsk Territory and Krasnoyarsk Regional Fund of Science, project number 20-44-240001 and by the Russian Ministry of Science and Higher Education (projects FSRZ-2020-0010).</p>


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 878
Author(s):  
Chang-Hyun Park ◽  
Ui-Cheon Lee ◽  
Soo-Chul Kim ◽  
Kwang-Hee Lee

To analyze the relationship between climatic factors (monthly mean temperature and total precipitation) and tree-ring growths of Pinus densiflora from the central region of the Republic of Korea, more than 20 trees were sampled from three national parks. The tree-ring chronology of Mt. Bukhan covering the period of 1917–2016 was assessed, as well as that of Mt. Seorak across 1687–2017 and Mt. Worak across 1777–2017. After cross-dating, each ring-width series was double-standardized by first fitting a logarithmic curve and then a 50 year cubic spline. Climate-growth relationships were computed with bootstrap correlation functions. The result of the analysis showed a positive response from the current March temperature and May precipitations for tree-ring growth of Pinus densiflora. It indicates that a higher temperature supply during early spring season and precipitation during cambium activity are important for radial growths of Pinus densiflora from the central region in the Republic of Korea.


2016 ◽  
Vol 23 (2) ◽  
pp. 14-19 ◽  
Author(s):  
U K Thapa ◽  
S K Shah ◽  
N P Gaire ◽  
D R Bhuju ◽  
A. Bhattacharyya ◽  
...  

 This study aims to understand the influence of climate on radial growth of Abies pindrow growing in the plateau of mixed forest in Khaptad National Park in Western Nepal Himalaya. Based on the dated tree-ring samples, 362-year long tree-ring width chronology was developed dating back to 1650. The studied taxa of this region was found to have dendroclimatic potentiality that was evident from the chronology statistics calculated. The tree-ring chronology was correlated with climate (temperature and precipitation) data to derive the tree-growth climate relationship. The result showed significant negative relationship with March-May temperature and positive relationship with March-May precipitation. This indicates that the availability of moisture is the primary factor in limiting the tree growth.Banko Janakari, Vol. 23, No. 2, 2013


Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 99
Author(s):  
Jiachuan Wang ◽  
Shuheng Li ◽  
Yili Guo ◽  
Qi Yang ◽  
Rui Ren ◽  
...  

Larix principis-rupprechtii is an important afforestation tree species in the North China alpine coniferous forest belt. Studying the correlations and response relationships between Larix principis-rupprechtii radial growth and climatic factors at different elevations is helpful for understanding the growth trends of L. principis-rupprechtiind its long-term sensitivity and adaptability to climate change. Pearson correlation, redundancy (RDA), and sliding analysis were performed to study the correlations and dynamic relationships between radial growth and climatic factors. The main conclusions are as follows: (1) The three-elevation standard chronologies all exhibited high characteristic values, contained rich climate information and were suitable for tree-ring climatological analyses. (2) Both temperature and precipitation restricted low-elevation L. principis-rupprechtii radial growth, while monthly maximum temperatures mainly affected mid-high-elevation L. principis-rupprechtii radial growth. (3) Mid-elevation L. principis-rupprechtii radial growth responded to climate factors with a “lag effect” and was not restricted by spring and early summer drought. (4) Long-term sliding analysis showed that spring temperatures and winter precipitation were the main climatic factors restricting L. principis-rupprechtii growth under warming and drying climate trends at different elevations. The tree-ring width index and Palmer drought severity index (PDSI) were positively correlated, indicating that L. principis-rupprechtii growth is somewhat restricted by drought. These results provide a reference and guidance for L. principis-rupprechtii management and sustainable development in different regions under warming and drying background climate trends.


1971 ◽  
Vol 1 (4) ◽  
pp. 419-449 ◽  
Author(s):  
Harold C. Fritts

Dendrochronology is the science of dating annual growth layers (rings) in woody plants. Two related subdisciplines are dendroclimatology and dendroecology. The former uses the information in dated rings to study problems of present and past climates, while the latter deals with changes in the local environment rather than regional climate.Successful applications of dendroclimatology and dendroecology depend upon careful stratification. Ring-width samples are selected from trees on limiting sites, where widths of growth layers vary greatly from one year to the next (sensitivity) and autocorrelation of the widths is not high. Rings also must be cross-dated and sufficiently replicated to provide precise dating. This selection and dating assures that the climatic information common to all trees, which is analogous to the “signal”, is large and properly placed in time. The random error or nonclimatic variations in growth, among trees, is analogous to “noise” and is reduced when ring-width indices are averaged for many trees.Some basic facts about the growth are presented along with a discussion of important physiological processes operating throughout the roots, stems, and leaves. Certain gradients associated with tree height, cambial age, and physiological activity control the size of the growth layers as they vary throughout the tree. These biological gradients interact with environmental variables and complicate the task of modeling the relationships linking growth with environment.Biological models are described for the relationships between variations in ring widths from conifers on arid sites, and variations in temperature and precpitation. These climatic factors may influence the tree at any time in the year. Conditions preceding the growing season sometimes have a greater influence on ring width than conditions during the growing season, and the relative effects of these factors on growth vary with latitude, altitude, and differences in factors of the site. The effects of some climatic factors on growth are negligible during certain times of the year, but important at other times. Climatic factors are sometimes directly related to growth and at other times are inversely related to growth. Statistical methods are described for ascertaining these differences in the climatic response of trees from different sites.A practical example is given of a tree-ring study and the mechanics are described for stratification and selection of tree-ring materials, for laboratory preparation, for cross-dating, and for computer processing. Several methods for calibration of the ring-width data with climatic variation are described. The most recent is multivariate analysis, which allows simultaneous calibration of a variety of tree-ring data representing different sites with a number of variables of climate.Several examples of applications of tree-ring analysis to problems of environment and climate are described. One is a specification from tree rings of anomalies in atmosphere circulation for a portion of the Northern Hemisphere since 1700 A.D. Another example treats and specifies past conditions in terms of conditional probabilities. Other methods of comparing present climate with past climate are described along with new developments in reconstructing past hydrologic conditions from tree rings.Tree-ring studies will be applied in the future to problems of temperate and mesic environments, and to problems of physiological, genetic, and anatomical variations within and among trees. New developments in the use of X-ray techniques will facilitate the measurement and study of cell size and cell density. Tree rings are an important source of information on productivity and dry-matter accumulation at various sites. Some tree-ring studies will deal with environmental pollution. Statistical developments will improve estimation of certain past anomalies in weather factors and the reconstructtion of atmosphere circulation associated with climate variability and change. Such information should improve chances for measuring and assessing the possibility of inadvertent modification of climate by man.


2007 ◽  
Vol 37 (10) ◽  
pp. 1915-1923 ◽  
Author(s):  
F. Campelo ◽  
E. Gutiérrez ◽  
M. Ribas ◽  
C. Nabais ◽  
H. Freitas

The influence of climatic factors on tree-ring width and the formation of double rings was studied in Quercus ilex L. growing in a coppice stand left unmanaged for 22 years. Ten trees were felled and discs were taken every 30 cm from bole and dominant branches. Dendrometer bands were installed on 10 nearby trees and the data recorded were used to confirm the accuracy of our tree-ring identification. They were also used to relate the seasonal radial growth pattern to double-ring formation. Double rings were frequent and occurred consistently along the stem. Two types of double rings could be recognized according to their width: type I, with the extra growth band accounting for approximately 50% of the tree ring; and type II, with a narrow extra growth band. Type I double rings were formed when approximately 1/2 of the growing-season precipitation occurred during the second growth period of the season and after the summer drought. Type II double rings occurred when approximately 1/3 of the precipitation in the growing season occurred after the summer drought. The formation of double rings was triggered by rainfall in summer and the extra growth-band width was related to summer and autumn environmental conditions. Double rings in Q. ilex can potentially be used in dendroclimatological studies, as they are formed in response to climatic conditions within the growing season.


2011 ◽  
Vol 8 (6) ◽  
pp. 11089-11105
Author(s):  
R. Touchan ◽  
V. V. Shishov ◽  
D. M. Meko ◽  
I. Nouiri ◽  
A. Grachev

Abstract. We use the process-based VS (Vaganov-Shashkin) model to investigate whether a regional Pinus halapensis tree-ring chronology from Tunisia can be simulated as a function of climate alone by employing a biological model linking day length and daily temperature and precipitation (AD 1959–2004) from a climate station to ring-width variations. We use two periods to calibrate (1982–2004) and verify (1959–1981) the model. We have obtained highly significant positive correlation between the residual chronology and estimated growth curve (r = 0.76 p < 0.001). The model shows that the average duration of the growing season is 191 days. On average, soil moisture limits tree-ring growth for 128 days and temperature for 63 days.


2009 ◽  
Vol 39 (9) ◽  
pp. 1722-1736 ◽  
Author(s):  
Melissa Hoffer ◽  
Jacques C. Tardif

False rings (FRs) are a tree-ring anomaly that can be used to better understand tree growth and potentially reconstruct past climatic events. The main objective of this study was to explore the association between FRs and climate, especially drought occurrence. Sampling was conducted in Nopiming Provincial Park. Wood cores were extracted from jack pine ( Pinus banksiana Lamb.) in five stands and from co-occurring black spruce ( Picea mariana (Mill.) BSP) in three of these stands. After cross-dating, earlywood, latewood, and total ring width were measured on all cores. All FRs were identified, and their position within a tree ring was determined. Both species showed similar radial growth and FR patterns. Jack pine and to a lesser extent black spruce both showed abundant FRs in the juvenile period. Springs with cool and snowy conditions and summers with severe drought were associated with a higher frequency of FRs. These anomalies could be formed partly in response to timing of the start of the growing season and to conditions during that growing season that lead to interruption and subsequent resumption of normal growth. Jack pine radial growth was found to be more sensitive to precipitation, whereas that of black spruce was more sensitive to temperature.


2004 ◽  
Vol 34 (9) ◽  
pp. 1946-1954 ◽  
Author(s):  
Qi-Bin Zhang ◽  
Richard J Hebda

Radial growth of trees in mountainous areas is subject to conditions associated with changes in elevation. We present ring-width chronologies for Douglas-fir trees (Pseudotsuga menziesii (Mirb.) Franco var. menziesii) at nine sites spanning low to high elevations in the Bella Coola area of the central coast of British Columbia, near the northern limits of the species distribution, and investigate the variation in tree-ring growth patterns in relation to different elevations, using principal component (PC) analysis. We find that the first PC, which represents 55.6% of the total variance, reflects a common growth response at sites of different elevation. Response function analysis indicates that growing season precipitation is the major factor in controlling tree-ring growth. This factor explains more of the variance in low-elevation sites than it does in high-elevation ones. Temperature in August of the preceding year shows a negative relationship to ring-width growth. The second PC represents 16.7% of the total variance and reveals a distinct difference in growth response between low- and high-elevation sites. The length and temperature of the growing season seem to play an important role in tree-ring growth at sites of high elevation. Comparison of the Bella Coola records with those from southern Vancouver Island suggests that growing season precipitation influences growth of Douglas-fir on a macroregional scale, but other factors such as temperature modify the growth response at the limits of the distribution of the species.


Sign in / Sign up

Export Citation Format

Share Document