CONTINUOUS BACKGROUNDS IN PIXE

1990 ◽  
Vol 01 (01) ◽  
pp. 1-29 ◽  
Author(s):  
KEIZO ISHII ◽  
SUSUMU MORITA

Continuous X rays produced by light-ion·atom collisions, which mainly form continuous backgrounds and determine the detection limit of PIXE, have been experimentally and theoretically studied, and it is shown that the experimental results over the wide range of projectile-ion energy from 0.5 MeV to 40 MeV can be well explained by three kinds of radiative process: atomic bremsstrahlung (AB), secondary-electron bremsstrahlung (SEB), and quasifree electron bremsstrahlung (QFEB). Results on the X-ray spectra, the projectile-energy dependence and the projectile-charge dependence, and on the angular distribution of these bremsstrahlungs will be summarized and the importance of AB in heavy-ion atom collision is presented. Discussions are also given on the other origins of continuous backgrounds such as the Compton scattering background, cosmic rays, the Rutherford scattering background, piling up of signals and response functions of detector, charge up effect of the target and natural backgrounds. On the basis of analyses of continuous backgrounds, the detection limit of PIXE is estimated.

1996 ◽  
Vol 06 (03n04) ◽  
pp. 441-445
Author(s):  
K. KAWATSURA ◽  
T. HASEGAWA ◽  
N. TERAZAWA ◽  
S. ARAI ◽  
M. SATAKA ◽  
...  

Continuous X rays produced by highly charged heavy ion-atom collisions have been studied experimentally. 2–5.5 MeV/u F, Si, S and Cl ions with zero or one electron were bombarded with a thin gas target of H 2 and He. Emitted X-ray spectra were measured by using a Si(Li) X-ray detector at 90°. The characteristic X rays and radiative electron capture X rays were observed clearly, which were superimposed on the continuum X rays. The continuum X rays can be well explained by two types of radiative processes: mainly quasi-free electron bremsstrahlung (QFEB), and partly atomic bremsstrahlung (AB). It should be noticed that QFEB is predominant at low X-ray energy region and AB at high X-ray energy region in highly charged heavy ion-atom collision process.


2007 ◽  
Vol 121-123 ◽  
pp. 995-998
Author(s):  
Z.H. Yang ◽  
X.M. Chen ◽  
Y.P. Zhang ◽  
X.A. Zhang ◽  
Y.T. Zhao ◽  
...  

14-GHz electron cyclotron resonance ion source at the Heavy Ion Research Facility National Laboratory in Lanzhou has been used to investigate x-rays from the interaction of slow highly charged Ar17+and Ar16+ions for different energies with Be, Al, Ni, Mo and Au surfaces. Interaction of Ar17+ and Ar16+ ions with Metallic Surfaces for a wide range of energies has been studied by measuring the resulting x-ray emission. The characteristic features of the x-ray spectra have been explained.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Daniele Torsello ◽  
Laura Gozzelino ◽  
Roberto Gerbaldo ◽  
Tsuyoshi Tamegai ◽  
Gianluca Ghigo

AbstractWe report on ion irradiation experiments performed on compounds belonging to the $$\hbox {BaFe}_2\hbox {As}_2$$ BaFe 2 As 2 family, each one involving the partial substitution of an atom of the parent compound (K for Ba, Co for Fe, and P for As), with an optimal composition to maximize the superconducting critical temperature $$T_c$$ T c . Employed ion beams were 3.5-MeV protons, 250-MeV Au ions, and 1.2-GeV Pb ions, but additional data from literature are also considered, thus covering a wide range of ions and energies. Microwave characterization based on the use of a coplanar waveguide resonator allowed us to investigate the irradiation-induced $$T_c$$ T c degradation, as well as the increase of normal state resistivity and London penetration depth. The damage was quantified in terms of displacements per atom (dpa). From this broad and comprehensive set of experimental data, clear scaling laws emerge, valid in the range of moderate irradiation-induced disorder (dpa up to 5 $$\times$$ × 10 $$^{-3}$$ - 3 were investigated). In these conditions, linear trends with dpa were found for all the modification rates, while a power law dependence on the ion energy was found for heavy-ion irradiation. All these scaling laws are reported and discussed throughout the paper.


Author(s):  
Y. Kokubo ◽  
W. H. Hardy ◽  
J. Dance ◽  
K. Jones

A color coded digital image processing is accomplished by using JEM100CX TEM SCAN and ORTEC’s LSI-11 computer based multi-channel analyzer (EEDS-II-System III) for image analysis and display. Color coding of the recorded image enables enhanced visualization of the image using mathematical techniques such as compression, gray scale expansion, gamma-processing, filtering, etc., without subjecting the sample to further electron beam irradiation once images have been stored in the memory.The powerful combination between a scanning electron microscope and computer is starting to be widely used 1) - 4) for the purpose of image processing and particle analysis. Especially, in scanning electron microscopy it is possible to get all information resulting from the interactions between the electron beam and specimen materials, by using different detectors for signals such as secondary electron, backscattered electrons, elastic scattered electrons, inelastic scattered electrons, un-scattered electrons, X-rays, etc., each of which contains specific information arising from their physical origin, study of a wide range of effects becomes possible.


2021 ◽  
Vol 120 ◽  
pp. 114128
Author(s):  
Bing Ye ◽  
Li-Hua Mo ◽  
Peng-Fei Zhai ◽  
Li Cai ◽  
Tao Liu ◽  
...  

2010 ◽  
Vol 1 (SRMS-7) ◽  
Author(s):  
David Pennicard ◽  
Heinz Graafsma ◽  
Michael Lohmann

The new synchrotron light source PETRA-III produced its first beam last year. The extremely high brilliance of PETRA-III and the large energy range of many of its beamlines make it useful for a wide range of experiments, particularly in materials science. The detectors at PETRA-III will need to meet several requirements, such as operation across a wide dynamic range, high-speed readout and good quantum efficiency even at high photon energies. PETRA-III beamlines with lower photon energies will typically be equipped with photon-counting silicon detectors for two-dimensional detection and silicon drift detectors for spectroscopy and higher-energy beamlines will use scintillators coupled to cameras or photomultiplier tubes. Longer-term developments include ‘high-Z’ semiconductors for detecting high-energy X-rays, photon-counting readout chips with smaller pixels and higher frame rates and pixellated avalanche photodiodes for time-resolved experiments.


2021 ◽  
Author(s):  
Yu Liu ◽  
Yan Wang ◽  
Xiao-Sa Zhang ◽  
Yu-Shu Sheng ◽  
Wen-Ze Li ◽  
...  

A Zn-CP exhibits remarkable fluorescence behaviours and stability in a wide range of pH values. It can become an outstanding candidate in the selective sensing of Fe3+, Mg2+, Cr2O72−, MnO4−, NB and NM at a lower detection limit.


2018 ◽  
Vol 620 ◽  
pp. A18 ◽  
Author(s):  
C. H. A. Logan ◽  
B. J. Maughan ◽  
M. N. Bremer ◽  
P. Giles ◽  
M. Birkinshaw ◽  
...  

Context. The XMM-XXL survey has used observations from the XMM-Newton observatory to detect clusters of galaxies over a wide range in mass and redshift. The moderate PSF (FWHM ~ 6″ on-axis) of XMM-Newton means that point sources within or projected onto a cluster may not be separated from the cluster emission, leading to enhanced luminosities and affecting the selection function of the cluster survey. Aims. We present the results of short Chandra observations of 21 galaxy clusters and cluster candidates at redshifts z > 1 detected in the XMM-XXL survey in X-rays or selected in the optical and infra-red. Methods. With the superior angular resolution of Chandra, we investigate whether there are any point sources within the cluster region that were not detected by the XMM-XXL analysis pipeline, and whether any point sources were misclassified as distant clusters. Results. Of the 14 X-ray selected clusters, 9 are free from significant point source contamination, either having no previously unresolved sources detected by Chandra or with less than about 10% of the reported XXL cluster flux being resolved into point sources. Of the other five sources, one is significantly contaminated by previously unresolved AGN, and four appear to be AGN misclassified as clusters. All but one of these cases are in the subset of less secure X-ray selected cluster detections and the false positive rate is consistent with that expected from the XXL selection function modelling. We also considered a further seven optically selected cluster candidates associated with faint XXL sources that were not classed as clusters. Of these, three were shown to be AGN by Chandra, one is a cluster whose XXL survey flux was highly contaminated by unresolved AGN, while three appear to be uncontaminated clusters. By decontaminating and vetting these distant clusters, we provide a pure sample of clusters at redshift z > 1 for deeper follow-up observations, and demonstrate the utility of using Chandra snapshots to test for AGN in surveys with high sensitivity but poor angular resolution.


2013 ◽  
Vol 46 (5) ◽  
pp. 1508-1512 ◽  
Author(s):  
Byron Freelon ◽  
Kamlesh Suthar ◽  
Jan Ilavsky

Coupling small-angle X-ray scattering (SAXS) and ultra-small-angle X-ray scattering (USAXS) provides a powerful system of techniques for determining the structural organization of nanostructured materials that exhibit a wide range of characteristic length scales. A new facility that combines high-energy (HE) SAXS and USAXS has been developed at the Advanced Photon Source (APS). The application of X-rays across a range of energies, from 10 to 50 keV, offers opportunities to probe structural behavior at the nano- and microscale. An X-ray setup that can characterize both soft matter or hard matter and high-Zsamples in the solid or solution forms is described. Recent upgrades to the Sector 15ID beamline allow an extension of the X-ray energy range and improved beam intensity. The function and performance of the dedicated USAXS/HE-SAXS ChemMatCARS-APS facility is described.


Sign in / Sign up

Export Citation Format

Share Document