Single Chemical Sensor for Multi-Analyte Mixture Detection and Measurement: A Review

2020 ◽  
Vol 29 (01n04) ◽  
pp. 2040008
Author(s):  
Bo Zhang ◽  
Pu-Xian Gao

Multi-analyte chemical sensor aims to transform subtle variations in multiple analytes’ physical or chemical properties into distinct output signals. Chemically responsive nanostructure array (nanoarray) promises as a competitive sensor platform due to its robust physical properties, tunable chemical composition, and high surface area for analyte interaction. Specifically, the well-defined size, shape, and tunable surface structure and properties make it feasible to develop either new sensing modes on single device or integrated multi-modular sensors. In conjunction with the well-developed resistor-type sensors and sensor arrays, the complementary utilization of and intercorrelation with the electrochemical, optical, voltammetry modes in the multi-modular sensing strategies could provide multi-dimensional measurements to different analytes in a complex mixture form, where species information could be accurately and robustly separated from spatially collective responses. This review intends to provide a survey of the recent progress on multi-analyte sensing strategies and their unique structure design, as well as the related sensing mechanics in interaction of analytes and sensitizer and the behind mechanism for analytes’ differentiation.

Author(s):  
Frances M. Ross ◽  
Peter C. Searson

Porous semiconductors represent a relatively new class of materials formed by the selective etching of a single or polycrystalline substrate. Although porous silicon has received considerable attention due to its novel optical properties1, porous layers can be formed in other semiconductors such as GaAs and GaP. These materials are characterised by very high surface area and by electrical, optical and chemical properties that may differ considerably from bulk. The properties depend on the pore morphology, which can be controlled by adjusting the processing conditions and the dopant concentration. A number of novel structures can be fabricated using selective etching. For example, self-supporting membranes can be made by growing pores through a wafer, films with modulated pore structure can be fabricated by varying the applied potential during growth, composite structures can be prepared by depositing a second phase into the pores and silicon-on-insulator structures can be formed by oxidising a buried porous layer. In all these applications the ability to grow nanostructures controllably is critical.


2021 ◽  
Vol 18 ◽  
Author(s):  
Raja Murugesan ◽  
Sureshkumar Raman

: At present treatment methods for cancer are limited, partially due to the solubility, poor cellular distribution of drug molecules and, the incapability of drugs to annoy the cellular barriers. Carbon nanotubes (CNTs) generally have excellent physio-chemical properties, which include high-level penetration into the cell membrane, high surface area and high capacity of drug loading by in circulating modification with bio-molecules, project them as an appropriate candidate to diagnose and deliver drugs to prostate cancer (PCa). Additionally, the chemically modified CNTs which have excellent 'Biosensing' properties therefore makes it easy for detecting PCa without fluorescent agent and thus targets the particular site of PCa and also, Drug delivery can accomplish a high efficacy, enhanced permeability with less toxic effects. While CNTs have been mainly engaged in cancer treatment, a few studies are focussed on the diagnosis and treatment of PCa. Here, we detailly reviewed the current progress of the CNTs based diagnosis and targeted drug delivery system for managing and curing PCa.


Author(s):  
Ketki Lichade ◽  
Yizhou Jiang ◽  
Yayue Pan

Abstract Recently, many studies have investigated additive manufacturing of hierarchical surfaces with high surface area/volume (SA/V) ratios, and their performance has been characterized for applications in next-generation functional devices. Despite recent advances, it remains challenging to design and manufacture high SA/V ratio structures with desired functionalities. In this study, we established the complex correlations among the SA/V ratio, surface structure geometry, functionality, and manufacturability in the Two-Photon Polymerization (TPP) process. Inspired by numerous natural structures, we proposed a 3-level hierarchical structure design along with the mathematical modeling of the SA/V ratio. Geometric and manufacturing constraints were modeled to create well-defined three-dimensional hierarchically structured surfaces with a high accuracy. A process flowchart was developed to design the proposed surface structures to achieve the target functionality, SA/V ratio, and geometric accuracy. Surfaces with varied SA/V ratios and hierarchy levels were designed and printed. The wettability and antireflection properties of the fabricated surfaces were characterized. It was observed that the wetting and antireflection properties of the 3-level design could be easily tailored by adjusting the design parameter settings and hierarchy levels. Furthermore, the proposed surface structure could change a naturally-hydrophilic surface to near-superhydrophobic. Geometrical light trapping effects were enabled and the antireflection property could be significantly enhanced (>80% less reflection) by the proposed hierarchical surface structures. Experimental results implied the great potential of the proposed surface structures for various applications such as microfluidics, optics, energy, and interfaces.


2021 ◽  
Vol 308 ◽  
pp. 01019
Author(s):  
Haoran Kong ◽  
Jiarong Liu ◽  
Yu Yue

The selection of oxygen reduction reaction (ORR) catalysts plays a key role in enhancing the performance of proton exchange membrane fuel cells (PEMFCs). To optimize the energy conversion technology in PEMFCs and improve the cost-effectiveness of ORR catalysts, atomically dispersed metal-nitrogen-carbon (M-N-C) catalyst is regarded as one of the most promising materials to replace Pt-based catalysts. In this review, we summarize the advantages of atomically dispersed M-N-C catalysts in both physical and chemical properties, including controllable dimensions, ease of accessibility, high surface area and excellent conductivity. Additionally, the unique merits of their cost-effectiveness are also described by a concise comparison with other ORR catalysts. Subsequently, some of its main synthesis methods are based on the most commonly used zeolitic imidazolate framework (ZIF) precursor. Several other precursors involve carbon, nitrogen, and one or more active transition metals (mainly iron or cobalt) are introduced briefly. Although there are a variety of synthesis methods, all these methods are in line with pyrolysis technology. Then, the recent advancements of atomically dispersed M-N-C catalysts related to their development and application of Fe-N-C, Mn-N-C, and Co-N-C catalysts are comprehensively described. Finally, based on some common M-N-C catalysts, many improvement ideas are also proposed. The focus is on how to control the negative reaction in Fe-N-C catalysts, improve the activity of Co-N-C catalysts and Mn-N-C catalysts, and find more suitable transition metal materials to prepare M-N-C catalysts.


ChemTexts ◽  
2020 ◽  
Vol 6 (3) ◽  
Author(s):  
Erhard Kemnitz ◽  
Stefan Mahn ◽  
Thoralf Krahl

Abstract The recently developed fluorolytic sol–gel route to metal fluorides opens a very broad range of both scientific and technical applications of the accessible high surface area metal fluorides, many of which have already been applied or tested. Specific chemical properties such as high Lewis acidity and physical properties such as high surface area, mesoporosity and nanosize as well as the possibility to apply metal fluorides on surfaces via a non-aqueous sol make the fluorolytic synthesis route a very versatile one. The scope of its scientific and technical use and the state of the art are presented.


1984 ◽  
Vol 32 ◽  
Author(s):  
D. R. Uhlmann ◽  
B.J.J. Zelinski ◽  
G.E. Wnek

ABSTRACTThe use of sol-gel techniques to prepare glasses and crystalline ceramics offers outstanding opportunity for breakthroughs in technology. The areas of particular promise include novel glasses; crystallineceramics with exceptional microstructures; coatings for modification of electrical, optical, mechanical and chemical properties; porous media with high surface area and tailored chemistry; ceramic powders with high chemical homogeneity and narrow distributions of particle size; matrix materials in ceramicceramic composites; and a wide spectrum of specialty ceramic materials, ranging from abrasives and fibers to glass ceramics and films. Opportunities in each of these areas will be discussed and related to the advances in understanding and process technology required for their achievement. The theses will be advanced that creative chemistry provides the key to many of these advances, that ceramists simply MUST learn more chemistry, but that we dare not rest from our labors when the chemistry is done.


2009 ◽  
Vol 12 (3) ◽  
pp. 250 ◽  
Author(s):  
Roya Talari ◽  
Ali Nokhodchi ◽  
Seyed Abolfazl Mostafavi ◽  
Jaleh Varshosaz

Purpose: The micronization using milling process to enhance dissolution rate is extremely inefficient due to a high energy input, and disruptions in the crystal lattice which can cause physical or chemical instability. Therefore, the aim of the present study is to use in situ micronization process through pH change method to produce micron-size gliclazide particles for fast dissolution hence better bioavailability. Methods: Gliclazide was recrystallized in presence of 12 different stabilizers and the effects of each stabilizer on micromeritic behaviors, morphology of microcrystals, dissolution rate and solid state of recrystallized drug particles were investigated. Results: The results showed that recrystallized samples showed faster dissolution rate than untreated gliclazide particles and the fastest dissolution rate was observed for the samples recrystallized in presence of PEG 1500. Some of the recrystallized drug samples in presence of stabilizers dissolved 100% within the first 5 min showing at least 10 times greater dissolution rate than the dissolution rate of untreated gliclazide powders. Micromeritic studies showed that in situ micronization technique via pH change method is able to produce smaller particle size with a high surface area. The results also showed that the type of stabilizer had significant impact on morphology of recrystallized drug particles. The untreated gliclazide is rod or rectangular shape, whereas the crystals produced in presence of stabilizers, depending on the type of stabilizer, were very fine particles with irregular, cubic, rectangular, granular and spherical/modular shape. The results showed that crystallization of gliclazide in presence of stabilizers reduced the crystallinity of the samples as confirmed by XRPD and DSC results. Conclusion: In situ micronization of gliclazide through pH change method can successfully be used to produce micron-sized drug particles to enhance dissolution rate.


2021 ◽  
Vol 9 ◽  
Author(s):  
Sanggon Kim ◽  
Jacob Brady ◽  
Faraj Al-Badani ◽  
Sooyoun Yu ◽  
Joseph Hart ◽  
...  

Significant scientific efforts have been made to mimic and potentially supersede the mammalian nose using artificial noses based on arrays of individual cross-sensitive gas sensors over the past couple decades. To this end, thousands of research articles have been published regarding the design of gas sensor arrays to function as artificial noses. Nanoengineered materials possessing high surface area for enhanced reaction kinetics and uniquely tunable optical, electronic, and optoelectronic properties have been extensively used as gas sensing materials in single gas sensors and sensor arrays. Therefore, nanoengineered materials address some of the shortcomings in sensitivity and selectivity inherent in microscale and macroscale materials for chemical sensors. In this article, the fundamental gas sensing mechanisms are briefly reviewed for each material class and sensing modality (electrical, optical, optoelectronic), followed by a survey and review of the various strategies for engineering or functionalizing these nanomaterials to improve their gas sensing selectivity, sensitivity and other measures of gas sensing performance. Specifically, one major focus of this review is on nanoscale materials and nanoengineering approaches for semiconducting metal oxides, transition metal dichalcogenides, carbonaceous nanomaterials, conducting polymers, and others as used in single gas sensors or sensor arrays for electrical sensing modality. Additionally, this review discusses the various nano-enabled techniques and materials of optical gas detection modality, including photonic crystals, surface plasmonic sensing, and nanoscale waveguides. Strategies for improving or tuning the sensitivity and selectivity of materials toward different gases are given priority due to the importance of having cross-sensitivity and selectivity toward various analytes in designing an effective artificial nose. Furthermore, optoelectrical sensing, which has to date not served as a common sensing modality, is also reviewed to highlight potential research directions. We close with some perspective on the future development of artificial noses which utilize optical and electrical sensing modalities, with additional focus on the less researched optoelectronic sensing modality.


Author(s):  
PARDEEP KUMAR ◽  
AJINKYA GIRISH NENE ◽  
SANDEEP PUNIA ◽  
MANOJ KUMAR ◽  
ZAHOOR ABBAS ◽  
...  

Objective: The present study was done to see the effect of biologically synthesized CuO-NPs (Copperoxide nanoparticles) on the growth of bacterial strains. Methods: Physico-chemical characterization of CuO-NPs was done by UV-Vis-spectrophotometer, XRD, FE-SEM, and EDS. The disc plate diffusion assay was used to evaluate the anti-bacterial effect of CuNPs. Results: This study has shown a promising anti-bacterial activity of biosynthesized CuO-NPs at different concentrations ranging from 10 to 100 µg/ml against Escherichia coli and Staphylococcus aureus bacteria. Conclusion: Nanoparticles (NPs) are small size particles between range 1 to 100 nm which expand their physical and chemical properties due to high surface area. The present study reveals that there may be possible utilization of biosynthesized CuO NPs for the treatment of bacterial infectious disease in near future.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6600
Author(s):  
Omid Norouzi ◽  
Mohammad Heidari ◽  
Mario M. Martinez ◽  
Animesh Dutta

This study provides fundamental insight and offers a promising catalytic hydrothermal method to harness cranberry pomace as a potential bioenergy and/or hydrochar source. The physical and chemical properties of Canadian cranberry pomace, supplied by Fruit d’Or Inc., were examined and the optimum operational conditions, in terms of biocrude yield, were obtained by the I-optimal matrix of Design Expert 11. Afterward, cranberry pomace hydrochar (CPH) and zeolite were separately introduced to the hydrothermal liquefaction (HTL) process to investigate the benefits and disadvantages associated with their catalytic activity. CPH was found to be a better host than zeolite to accommodate cellulosic sugars and showed great catalytic performance in producing hydrocarbons. However, high amounts of corrosive amino and aliphatic acids hinder the practical application of CPH as a catalyst. Alternatively, zeolite, as a commercial high surface area catalyst, had a higher activity for deoxygenation of compounds containing carbonyl, carboxyl, and hydroxyl groups than CPH and resulted in higher selectivity of phenols. Due to the low hydrothermal structural stability, coke formation, and narrow pore size distribution, further activations and modifications are needed to improve the catalytic behavior of zeolite. Our results suggest that a composite composed of CPH and zeolite can resolve the abovementioned limitations and help with the development and commercialization of advanced biofuels from cranberry pomace.


Sign in / Sign up

Export Citation Format

Share Document