BALLISTIC COLLECTION TRANSISTORS AND THEIR APPLICATIONS

1994 ◽  
Vol 05 (03) ◽  
pp. 349-379 ◽  
Author(s):  
T. ISHIBASHI ◽  
Y. YAMAUCHI ◽  
E. SANO ◽  
H. NAKAJIMA ◽  
Y. MATSUOKA

We describe the design, fabrication and application of ballistic collection transistors (BCTs) in which electron velocity overshoot is introduced in the collector of a GaAs-based heterojunction bipolar transistor. The guideline for the BCT design is the effective confinement of electrons to the Γ-valley, as simulated by Monte Carlo analysis, and the control of electron energy is accomplished basically with an i-p+-n+ doping profile. Microwave characterization demonstrates the existence of significant overshoot and cutoff frequencies higher than 100 GHz at collector current densities in the mid 104 A/cm 2 range for a typical BCT structure. Some high speed integrated circuits implemented with BCTs include a selector circuit that operates at bit rates up to 40 Gb/s, a dynamic frequency divider with divide-by-four function up to 50 GHz and a broadband preamplifier having an S21 bandwidth as high as 40 GHz.

1998 ◽  
Vol 09 (02) ◽  
pp. 549-566
Author(s):  
JOHN SITCH ◽  
ROBERT SURRIDGE

Heterojunction bipolar transistor (HBT) integrated circuits are just beginning to appear on the commercial market, mostly as small-scale microwave and broadband parts. The high-speed portion of Nortel's OC-192 fiber communications product makes extensive use of this new technology, and this article describes the rationale for using HBT ICs in such a system, and the philosophy behind HBT IC introduction.


2013 ◽  
Vol 441 ◽  
pp. 125-128
Author(s):  
Li Fan Wu

A clock-inverter feed-forward toggle flip-flop (CIFF-TFF) based ultra-high-speed 2:1 dynamic frequency divider is designed in a GaAs heterojunction bipolar transistor (HBT) technology with fT of 60 GHz from Win Semiconductors corporation. The co-simulation methodology of electromagnetic field and schematic diagram is utilized in the design. Through tuning the currents in the core and the other parts of the divider separately, the dynamic frequency divider approaches an operating speed of 36 GHz with a power consumption of 162 mW in the core part from a single 6 V supply. The design is currently taped out.


Author(s):  
E.D. Wolf

Most microelectronics devices and circuits operate faster, consume less power, execute more functions and cost less per circuit function when the feature-sizes internal to the devices and circuits are made smaller. This is part of the stimulus for the Very High-Speed Integrated Circuits (VHSIC) program. There is also a need for smaller, more sensitive sensors in a wide range of disciplines that includes electrochemistry, neurophysiology and ultra-high pressure solid state research. There is often fundamental new science (and sometimes new technology) to be revealed (and used) when a basic parameter such as size is extended to new dimensions, as is evident at the two extremes of smallness and largeness, high energy particle physics and cosmology, respectively. However, there is also a very important intermediate domain of size that spans from the diameter of a small cluster of atoms up to near one micrometer which may also have just as profound effects on society as “big” physics.


Author(s):  
C. O. Jung ◽  
S. J. Krause ◽  
S.R. Wilson

Silicon-on-insulator (SOI) structures have excellent potential for future use in radiation hardened and high speed integrated circuits. For device fabrication in SOI material a high quality superficial Si layer above a buried oxide layer is required. Recently, Celler et al. reported that post-implantation annealing of oxygen implanted SOI at very high temperatures would eliminate virtually all defects and precipiates in the superficial Si layer. In this work we are reporting on the effect of three different post implantation annealing cycles on the structure of oxygen implanted SOI samples which were implanted under the same conditions.


Author(s):  
N. David Theodore ◽  
Donald Y.C Lie ◽  
J. H. Song ◽  
Peter Crozier

SiGe is being extensively investigated for use in heterojunction bipolar-transistors (HBT) and high-speed integrated circuits. The material offers adjustable bandgaps, improved carrier mobilities over Si homostructures, and compatibility with Si-based integrated-circuit manufacturing. SiGe HBT performance can be improved by increasing the base-doping or by widening the base link-region by ion implantation. A problem that arises however is that implantation can enhance strain-relaxation of SiGe/Si.Furthermore, once misfit or threading dislocations result, the defects can give rise to recombination-generation in depletion regions of semiconductor devices. It is of relevance therefore to study the damage and anneal behavior of implanted SiGe layers. The present study investigates the microstructural behavior of phosphorus implanted pseudomorphic metastable Si0.88Ge0.12 films on silicon, exposed to various anneals.Metastable pseudomorphic Si0.88Ge0.12 films were grown ~265 nm thick on a silicon wafer by molecular-beam epitaxy. Pieces of this wafer were then implanted at room temperature with 100 keV phosphorus ions to a dose of 1.5×1015 cm-2.


Author(s):  
Mark Kimball

Abstract This article presents a novel tool designed to allow circuit node measurements in a radio frequency (RF) integrated circuit. The discussion covers RF circuit problems; provides details on the Radio Probe design, which achieves an input impedance of 50Kohms and an overall attenuation factor of 0 dB; and describes signal to noise issues in the output signal, along with their improvement techniques. This cost-effective solution incorporates features that make it well suited to the task of differential measurement of circuit nodes within an RF IC. The Radio Probe concept offers a number of advantages compared to active probes. It is a single frequency measurement tool, so it complements, rather than replaces, active probes.


Author(s):  
Kenneth Krieg ◽  
Richard Qi ◽  
Douglas Thomson ◽  
Greg Bridges

Abstract A contact probing system for surface imaging and real-time signal measurement of deep sub-micron integrated circuits is discussed. The probe fits on a standard probe-station and utilizes a conductive atomic force microscope tip to rapidly measure the surface topography and acquire real-time highfrequency signals from features as small as 0.18 micron. The micromachined probe structure minimizes parasitic coupling and the probe achieves a bandwidth greater than 3 GHz, with a capacitive loading of less than 120 fF. High-resolution images of submicron structures and waveforms acquired from high-speed devices are presented.


Sign in / Sign up

Export Citation Format

Share Document