Gut Microbiota in Tumor Microenvironment: A Critical Regulator in Cancer Initiation and Development as Potential Targets for Chinese Medicine

2021 ◽  
Vol 49 (03) ◽  
pp. 609-626
Author(s):  
Li Wang ◽  
Fu Peng ◽  
Cheng Peng ◽  
Jun-Rong Du

Cancer is a disease with a high mortality and disability rate. Cancer consists not only of cancer cells, but also of the surrounding microenvironment and tumor microenvironment (TME) constantly interacting with tumor cells to support tumor development and progression. Over the last decade, accumulating evidence has implicated that microbiota profoundly influences cancer initiation and progression. Most research focuses on gut microbiota, for the gut harbors the largest collection of microorganisms. Gut microbiota includes bacteria, viruses, protozoa, archaea, and fungi in the gastrointestinal tract, affecting DNA damage, host immune response and chronic inflammation in various types of cancer (i.e., colon cancer, gastric cancer and breast cancer). Notably, gut dysbiosis can reshape tumor microenvironment and make it favorable for tumor growth. Recently, accumulating studies have attached the importance of traditional Chinese medicine (TCM) to cancer treatments, and the bioactive natural compounds have been considered as potential drug candidates to suppress cancer initiation and development. Interestingly, more recent studies demonstrate that TCM could potentially prevent and suppress early-stage cancer progression through the regulation of gut microbiota. This review is on the purpose of exhausting the significance of gut microbiota in the tumor microenvironment as potential targets of Chinese medicine.

2020 ◽  
Vol 11 ◽  
Author(s):  
Shahid Hussain ◽  
Bo Peng ◽  
Mathew Cherian ◽  
Jonathan W. Song ◽  
Dinesh K. Ahirwar ◽  
...  

The intricate interplay between malignant cells and host cellular and non-cellular components play crucial role in different stages of tumor development, progression, and metastases. Tumor and stromal cells communicate to each other through receptors such as integrins and secretion of signaling molecules like growth factors, cytokines, chemokines and inflammatory mediators. Chemokines mediated signaling pathways have emerged as major mechanisms underlying multifaceted roles played by host cells during tumor progression. In response to tumor stimuli, host cells-derived chemokines further activates signaling cascades that support the ability of tumor cells to invade surrounding basement membrane and extra-cellular matrix. The host-derived chemokines act on endothelial cells to increase their permeability and facilitate tumor cells intravasation and extravasation. The tumor cells-host neutrophils interaction within the vasculature initiates chemokines driven recruitment of inflammatory cells that protects circulatory tumor cells from immune attack. Chemokines secreted by tumor cells and stromal immune and non-immune cells within the tumor microenvironment enter the circulation and are responsible for formation of a “pre-metastatic niche” like a “soil” in distant organs whereby circulating tumor cells “seed’ and colonize, leading to formation of metastatic foci. Given the importance of host derived chemokines in cancer progression and metastases several drugs like Mogamulizumab, Plerixafor, Repertaxin among others are part of ongoing clinical trial which target chemokines and their receptors against cancer pathogenesis. In this review, we focus on recent advances in understanding the complexity of chemokines network in tumor microenvironment, with an emphasis on chemokines secreted from host cells. We especially summarize the role of host-derived chemokines in different stages of metastases, including invasion, dissemination, migration into the vasculature, and seeding into the pre-metastatic niche. We finally provide a brief description of prospective drugs that target chemokines in different clinical trials against cancer.


2020 ◽  
Vol 35 (1_suppl) ◽  
pp. 8-11 ◽  
Author(s):  
Paola Nisticò ◽  
Gennaro Ciliberto

Our view of cancer biology radically shifted from a “cancer-cell-centric” vision to a view of cancer as an organ disease. The concept that genetic and/or epigenetic alterations, at the basis of cancerogenesis, are the main if not the exclusive drivers of cancer development and the principal targets of therapy, has now evolved to include the tumor microenvironment in which tumor cells can grow, proliferate, survive, and metastasize only within a favorable environment. The interplay between cancer cells and the non-cellular and cellular components of the tumor microenvironment plays a fundamental role in tumor development and evolution both at the primary site and at the level of metastasis. The shape of the tumor cells and tumor mass is the resultant of several contrasting forces either pro-tumoral or anti-tumoral which have at the level of the tumor microenvironment their battle field. This crucial role of tumor microenvironment composition in cancer progression also dictates whether immunotherapy with immune checkpoint inhibitor antibodies is going to be efficacious. Hence, tumor microenvironment deconvolution has become of great relevance in order to identify biomarkers predictive of efficacy of immunotherapy. In this short paper we will briefly review the relationship between inflammation and cancer, and will summarize in 10 short points the key concepts learned so far and the open challenges to be solved.


2021 ◽  
Author(s):  
Sophie Curio ◽  
Sarah C Edwards ◽  
Toshiyasu Suzuki ◽  
Jenny McGovern ◽  
Chiara Triulzi ◽  
...  

γδT cells are unconventional T cells particularly abundant in mucosal tissues that play an important role in tissue surveillance and homeostasis. γδT cell activation is mediated by the T cell receptor composed of γ and δ chains, as well as activating receptors for stress-induced ligands, such as NKG2D. Contrary to the well-established anti-tumor function of γδT cells, recent studies have shown that γδT cells can promote tumor development in certain contexts. However, the mechanisms leading to this disease-promoting role remain poorly understood. Here, we show that mice lacking γδT cells survive longer in a mouse model of intestinal cancer, further supporting their pro-tumoral role. In a surprising conceptual twist, we found that these pro-tumor γδT cells are regulated by NKG2D signaling, a receptor normally associated with cancer cell killing. Germline deletion of Klrk1, the gene encoding NKG2D, reduced the frequency of γδT cells in the tumor microenvironment and delayed tumor progression. We further show that blocking NKG2D reduces the capability of γδT cells to produce IL-17A in the pre-metastatic lung and that co-culture of lung T cells with NKG2D ligand-expressing tumor cells specifically increases the frequency of γδT cells. Together, these data support the hypothesis that in a tumor microenvironment where NKG2D ligands are constitutively expressed, γδT cells accumulate in an NKG2D-dependent manner and drive tumor progression by secreting pro-inflammatory cytokines, such as IL-17A.


2021 ◽  
pp. 153537022110238
Author(s):  
Wenjing Zhang ◽  
Carolina Torres-Rojas ◽  
Junming Yue ◽  
Bing-Mei Zhu

Ovarian cancer is the deadliest gynecological malignancy due to its symptomless early stage, metastasis, and high recurrence rate. The tumor microenvironment contributes to the ovarian cancer progression, metastasis, and chemoresistance. Adipose-derived stem cell in the tumor microenvironment of ovarian cancer, as a key player, interacts with ovarian cancer cells to form the cancer-associated fibroblasts and cancer-associated adipocytes, and secretes soluble factors to activate tumor cell signaling, which can promote ovarian cancer metastasis and chemoresistance. We summarize in this review the recent progress in the studies of interactions between adipose-derived stem cell and ovarian cancer, thus, to provide some insight for ovarian cancer therapy through targeting adipose-derived stem cell.


2021 ◽  
Vol 22 (17) ◽  
pp. 9626
Author(s):  
Pin-Yu Huang ◽  
Yu-Chih Yang ◽  
Chun-I Wang ◽  
Pei-Wen Hsiao ◽  
Hsin-I Chiang ◽  
...  

Gut microbiota are reported to be associated with many diseases, including cancers. Several bacterial taxa have been shown to be associated with cancer development or response to treatment. However, longitudinal microbiota alterations during the development of cancers are relatively unexplored. To better understand how microbiota changes, we profiled the gut microbiota composition from prostate cancer-bearing mice and control mice at five different time points. Distinct gut microbiota differences were found between cancer-bearing mice and control mice. Akkermansiaceae was found to be significantly higher in the first three weeks in cancer-bearing mice, which implies its role in the early stage of cancer colonization. We also found that Bifidobacteriaceae and Enterococcaceae were more abundant in the second and last sampling week, respectively. The increments of Akkermansiaceae, Bifidobacteriaceae and Enterococcaceae were previously found to be associated with responses to immunotherapy, which suggests links between these bacteria families and cancers. Additionally, our function analysis showed that the bacterial taxa carrying steroid biosynthesis and butirosin and neomycin biosynthesis were increased, whereas those carrying naphthalene degradation decreased in cancer-bearing mice. Our work identified the bacteria taxa altered during prostate cancer progression and provided a resource of longitudinal microbiota profiles during cancer development in a mouse model.


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5752
Author(s):  
Emma H. Allott ◽  
Kellie Dean ◽  
Tracy Robson ◽  
Claire Meaney

Our understanding of cancer initiation, progression, and treatment is continually progressing through dedicated research achieved through laboratory investigation, clinical trials, and patient engagement. The importance and complexity of the microenvironment and its role in tumor development and behavior is pivotal to the understanding of tumor growth and the best course of treatment. The 57th Irish Association for Cancer Research (IACR) Annual Conference collected key researchers, clinicians, and patient advocates together to highlight and discuss the recognized importance of the microenvironment and treatment advances in cancer. In this article, we describe the key components of the microenvironment that influence tumor development and treatment, including the microbiome, metabolism, and immune response and the progress of preclinical models to reflect these complex environments. From a psycho-social oncology perspective, we highlight expert opinion and data on the process of shared decision-making in the context of emerging cancer treatments.


2019 ◽  
Vol 11 (7) ◽  
pp. 600-604 ◽  
Author(s):  
Yan Stein ◽  
Ronit Aloni-Grinstein ◽  
Varda Rotter

Abstract A plethora of studies suggest that the non-transformed cellular and non-cellular components of the tumor, collectively known as the tumor microenvironment, have a significant impact on the tumorigenic process. It was suggested that the microenvironment, which initially restricts tumor development, is recruited by the tumor and maintains a crosstalk that further promotes cancer progression. Indeed, many of the molecules that participate in the tumor–stroma crosstalk have been characterized. However, the crucial factors that are responsible for the initiation of this crosstalk or the ‘recruitment’ process remain poorly understood. We propose that oncogenes themselves may influence the ‘recruitment’ of the stromal cells, while focusing on mutant p53. Apart from losing its tumor-suppressing properties, mutant p53 gains novel oncogenic functions, a phenomenon dubbed mutant p53 gain of function (GOF). Here, we discuss possible ways in which mutant p53 may modulate the microenvironment in order to promote tumorigenesis. We thus propose that mutant p53 may serve as a key player in the modulation of the tumor–stroma crosstalk in a way that benefits the tumor. Further elucidation of these ‘recruitment’ processes, dictated by mutant p53, may be utilized for tailoring personalized therapeutic approaches for patients with tumors that harbor p53 mutation.


Author(s):  
Enli Yang ◽  
Xuan Wang ◽  
Zhiyuan Gong ◽  
Miao Yu ◽  
Haiwei Wu ◽  
...  

Abstract Metabolic reprogramming is reported to be one of the hallmarks of cancer, which is an adaptive mechanism by which fast-growing cancer cells adapt to their increasing energy demands. Recently, extracellular vesicles (EVs) known as exosomes have been recognized as crucial signaling mediators in regulating the tumor microenvironment (TME). Meanwhile, the TME is a highly heterogeneous ecosystem incorporating cancer cells, fibroblasts, adipocytes, endothelial cells, mesenchymal stem cells, and extracellular matrix. Accumulated evidence indicates that exosomes may transfer biologically functional molecules to the recipient cells, which facilitate cancer progression, angiogenesis, metastasis, drug resistance, and immunosuppression by reprogramming the metabolism of cancer cells and their surrounding stromal cells. In this review, we present the role of exosomes in the TME and the underlying mechanism of how exosomes exacerbate tumor development through metabolic reprogramming. In addition, we will also discuss the potential role of exosomes targeting metabolic process as biomarkers for tumor diagnosis and prognosis, and exosomes-mediated metabolic reprogramming as potential targets for cancer therapy. Furthermore, a better understanding of the link between exosomes and metabolic reprogramming, and their impact on cancer progression, would provide novel insights for cancer prevention and treatment in the future.


Cancers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1803 ◽  
Author(s):  
Alexandra Landras ◽  
Coralie Reger de Moura ◽  
Fanelie Jouenne ◽  
Celeste Lebbe ◽  
Suzanne Menashi ◽  
...  

Microenvironment plays a crucial role in tumor development and progression. Cancer cells modulate the tumor microenvironment, which also contribute to resistance to therapy. Identifying biomarkers involved in tumorigenesis and cancer progression represents a great challenge for cancer diagnosis and therapeutic strategy development. CD147 is a glycoprotein involved in the regulation of the tumor microenvironment and cancer progression by several mechanisms—in particular, by the control of glycolysis and also by its well-known ability to induce proteinases leading to matrix degradation, tumor cell invasion, metastasis and angiogenesis. Accumulating evidence has demonstrated the role of CD147 expression in tumor progression and prognosis, suggesting it as a relevant tumor biomarker for cancer diagnosis and prognosis, as well as validating its potential as a promising therapeutic target in cancers.


2020 ◽  
Vol 21 (3) ◽  
pp. 758 ◽  
Author(s):  
Kuo-Shyang Jeng ◽  
Chiung-Fang Chang ◽  
Shu-Sheng Lin

During mammalian embryonic development, primary cilia transduce and regulate several signaling pathways. Among the various pathways, Sonic hedgehog (SHH) is one of the most significant. SHH signaling remains quiescent in adult mammalian tissues. However, in multiple adult tissues, it becomes active during differentiation, proliferation, and maintenance. Moreover, aberrant activation of SHH signaling occurs in cancers of the skin, brain, liver, gallbladder, pancreas, stomach, colon, breast, lung, prostate, and hematological malignancies. Recent studies have shown that the tumor microenvironment or stroma could affect tumor development and metastasis. One hypothesis has been proposed, claiming that the pancreatic epithelia secretes SHH that is essential in establishing and regulating the pancreatic tumor microenvironment in promoting cancer progression. The SHH signaling pathway is also activated in the cancer stem cells (CSC) of several neoplasms. The self-renewal of CSC is regulated by the SHH/Smoothened receptor (SMO)/Glioma-associated oncogene homolog I (GLI) signaling pathway. Combined use of SHH signaling inhibitors and chemotherapy/radiation therapy/immunotherapy is therefore key in targeting CSCs.


Sign in / Sign up

Export Citation Format

Share Document