THE USE OF ARRHENIUS KINETIC MODEL TO PREDICT ACTIVATION ENERGIES IN HARDWOOD–WATER SYSTEMS

2007 ◽  
Vol 14 (05) ◽  
pp. 999-1005
Author(s):  
H. TURGUT SAHIN

In this study, water swelling coefficients and activation energies for eucalyptus and poplar woods were calculated. The swelling properties of both species appear to directly proportional dependence on temperature and its directions. In the tangential direction, the swelling rate coefficients of eucalyptus ranged from 0.30 to 0.69 are greater than that of poplar which ranged from 0.24 to 0.55. In comparison to average activation energy (E a ), poplar approximately have 2.6 kJ/mole higher E a than eucalyptus (36.7 vs 39.3 kJ/mole). The comparison and the measured results reveal that the swelling response of both woods with temperature can be quite well predicted using Arrhenius kinetic theory.

Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 581
Author(s):  
Abdulhakim A. Almajid

This study is focused on the deformation mechanism and behavior of naturally aged 7010 aluminum alloy at elevated temperatures. The specimens were naturally aged for 60 days to reach a saturated hardness state. High-temperature tensile tests for the naturally aged sample were conducted at different temperatures of 573, 623, 673, and 723 K at various strain rates ranging from 5 × 10−5 to 10−2 s−1. The dependency of stress on the strain rate showed a stress exponent, n, of ~6.5 for the low two temperatures and ~4.5 for the high two temperatures. The apparent activation energies of 290 and 165 kJ/mol are observed at the low, and high-temperature range, respectively. These values of activation energies are greater than those of solute/solvent self-diffusion. The stress exponents, n, and activation energy observed are rather high and this indicates the presence of threshold stress. This behavior occurred as a result of the dislocation interaction with the second phase particles that are existed in the alloy at the testing temperatures. The threshold stress decreases in an exponential manner as temperature increases. The true activation energy was computed by incorporating the threshold stress in the power-law relation between the stress and the strain. The magnitude of the true activation energy, Qt dropped to 234 and 102 kJ/mol at the low and high-temperature range, respectively. These values are close to that of diffusion of Zinc in Aluminum and diffusion of Magnesium in Aluminum, respectively. The Zener–Hollomon parameter for the alloy was developed as a function of effective stress. The data in each region (low and high-temperature region) coalescence in a segment line in each region.


Author(s):  
Mallaiah Mekala

AbstractThe reaction of isopropyl alcohol with acetic acid was carried out in an isothermal batch reactor in presence of solid resin catalyst to produce isopropyl acetate and water. A novel solid resin catalyst Indion 140 was used in the present study. The temperature of reaction mixture was maintained in the range of 333.15 – 363.15 K. The effects of reaction temperature, catalyst loading, mole ratio, size of catalyst, agitation speed were investigated on acetic acid conversion. Further, pseudo-homogeneous kinetic model was developed for the catalyzed reaction. The forward reaction rate constants and activation energies were determined from the Arrhenius plot. The forward and backward activation energies are found to 53,459 J/mol and 54,748 J/mol, respectively. The heat of reaction is −1.289 kJ/mol with Indion 140 catalyst. The mathematical equation was developed for frequency factor as function of the catalyst loading and found that it follows a linear relationship between frequency factor and catalyst loading. The simulations were performed for pseudo homogeneous kinetic model and found that the model is able to predict the experimental data very well. The developed kinetic equation is useful for the simulation of a reactive distillation column for the synthesis of isopropyl acetate.


2021 ◽  
Vol 10 (1) ◽  
pp. 011-020
Author(s):  
Luyao Kou ◽  
Junjing Tang ◽  
Tu Hu ◽  
Baocheng Zhou ◽  
Li Yang

Abstract Generally, adding a certain amount of an additive to pulverized coal can promote its combustion performance. In this paper, the effect of CaO on the combustion characteristics and kinetic behavior of semi-coke was studied by thermogravimetric (TG) analysis. The results show that adding proper amount of CaO can reduce the ignition temperature of semi-coke and increase the combustion rate of semi-coke; with the increase in CaO content, the combustion rate of semi-coke increases first and then decreases, and the results of TG analysis showed that optimal addition amount of CaO is 2 wt%. The apparent activation energy of CaO with different addition amounts of CaO was calculated by Coats–Redfern integration method. The apparent activation energy of semi-coke in the combustion reaction increases first and then decreases with the increase in CaO addition. The apparent activation energies of different samples at different conversion rates were calculated by Flynn–Wall–Ozawa integral method. It was found that the apparent activation energies of semi-coke during combustion reaction decreased with the increase in conversion.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Xiaoguo Wang ◽  
Jian Qin ◽  
Hiromi Nagaumi ◽  
Ruirui Wu ◽  
Qiushu Li

The hot deformation behaviors of homogenized direct-chill (DC) casting 6061 aluminum alloys and Mn/Cr-containing aluminum alloys denoted as WQ1 were studied systematically by uniaxial compression tests at various deformation temperatures and strain rates. Hot deformation behavior of WQ1 alloy was remarkably changed compared to that of 6061 alloy with the presence of α-Al(MnCr)Si dispersoids. The hyperbolic-sine constitutive equation was employed to determine the materials constants and activation energies of both studied alloys. The evolution of the activation energies of two alloys was investigated on a revised Sellars’ constitutive equation. The processing maps and activation energy maps of both alloys were also constructed to reveal deformation stable domains and optimize deformation parameters, respectively. Under the influence of α dispersoids, WQ1 alloy presented a higher activation energy, around 40 kJ/mol greater than 6061 alloy’s at the same deformation conditions. Dynamic recrystallization (DRX) is main dynamic softening mechanism in safe processing domain of 6061 alloy, while dynamic recovery (DRV) was main dynamic softening mechanism in WQ1 alloy due to pinning effect of α-Al(MnCr)Si dispersoids. α dispersoids can not only resist DRX but also increase power required for deformation of WQ1 alloy. The microstructure analysis revealed that the flow instability was attributed to the void formation and intermetallic cracking during hot deformation of both alloys.


2001 ◽  
Vol 664 ◽  
Author(s):  
Stephan Heck ◽  
Howard M. Branz

ABSTRACTWe report experimental results that help settle apparent inconsistencies in earlier work on photoconductivity and light-induced defects in hydrogenated amorphous silicon (a-Si:H) and point toward a new understanding of this subject. After observing that light-induced photoconductivity degradation anneals out at much lower T than the light-induced increase in deep defect density, Han and Fritzsche[1] suggested that two kinds of defects are created during illumination of a-Si:H. In this view, one kind of defect degrades the photoconductivity and the other increases defect sub-bandgap optical absorption. However, the light-induced degradation model of Stutzmann et al.[2] assumes that photoconductivity is inversely proportional to the dangling-bond defect density. We observe two kinds of defects that are distinguished by their annealing activation energies, but because their densities remain in strict linear proportion during their creation, the two kinds of defects cannot be completely independent.In our measurements of photoconductivity and defect absorption (constant photocurrent method) during 25°C light soaking and during a series of isochronal anneals between 25 < T < 190°C, we find that the absorption measured with E ≤1.1 eV, first increases during annealing, then exhibits the usual absorption decrease found for deeper defects. The maximum in this absorption at E ≤1.1eV occurs simultaneously with a transition from fast to slow recovery of photoconductivity. The absorption for E ≤1.1eV shows two distinct annealing activation energies: the signal rises with about 0.87 eV and falls with about 1.15 eV. The 0.87 eV activation energy roughly equals the activation energy for the dominant, fast, recovery of photoconductivity. The 1.15 eV activation energy roughly equals the single activation energy for annealing of the light-induced dangling bond absorption.


2021 ◽  
Vol 903 ◽  
pp. 143-148
Author(s):  
Svetlana Cornaja ◽  
Svetlana Zhizhkuna ◽  
Jevgenija Vladiko

Supported 3wt%Pd/α-Al₂O₃ catalyst was tested in selective oxidation of 1,2-propanediol by molecular oxygen. It was found that the catalyst is active in an alkaline water solution. Lactic acid was obtained as the main product of the reaction. Influence of different reaction conditions on 1,2-PDO conversion and oxidation process selectivity was studied. Partial kinetic orders of the reaction with respect to 1,2-propanediol, c0(NaOH), p(O2), n(1,2-PDO)/n(Pd)) were determined and an experimental kinetic model of the catalytic oxidation reaction was obtained. Activation energy of the process was calculated and was found to be about 53 ± 5 kJ/mol.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Qin Yu ◽  
Xiangguo Lu ◽  
Yubao Jin ◽  
Cui Zhang ◽  
Kuo Liu ◽  
...  

Microspheres have excellent sealing performances such as injectivity, bridging-off, deep migration, and deformation performances, but their plugging effects are limited by the fast swelling rate and poor viscoelasticity. In this study, we synthesized a novel modified microsphere with polymerizable surfactant monomers and cationic monomers. We investigated the influence factors on the swelling performance and rheological properties of the microspheres and explored the ways to improve the plugging performance of hydrophobic-associating microspheres. The association behaviors in aqueous media of poly(acrylamide-co-methacry loyloxyethyl trimethyl ammonium chloride-co-n-dodecyl poly(etheroxy acrylate) P(AM-DMC-DEA) are proven to be mediated by the DEA content. Moreover, the hydrophobic association interaction has a strong effect on the performance of microspheres such as swelling properties, the rheological performance, and plugging properties. The swelling properties of microsphere studies exhibited the slow swelling rate. The rheological performance measurements showed significant improvements; yield stress, and creep compliance increased rapidly from 404 to 2060 Pa and 3.89 × 10−4 to 1.41 × 10−2 1/Pa, respectively, with DEA content in microspheres rising from 0.0% to 0.22%. The plugging properties of microspheres were enhanced by the slow swelling performance and good viscoelasticity.


Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 2075
Author(s):  
Tan Phat Dao ◽  
Thanh Viet Nguyen ◽  
Thi Yen Nhi Tran ◽  
Xuan Tien Le ◽  
Ton Nu Thuy An ◽  
...  

Pomelo peel-derived essential oils have been gaining popularity due to greater demand for stress relief therapy or hair care therapy. In this study, we first performed optimization of parameters in the pomelo essential oil extraction process on a pilot scale to gain better insights for application in larger scale production. Then extraction kinetics, activation energy, thermodynamics, and essential oil quality during the extraction process were investigated during the steam distillation process. Three experimental conditions including material mass, steam flow rate, and extraction time were taken into consideration in response surface methodology (RSM) optimization. The optimal conditions were found as follows: sample weight of 422 g for one distillation batch, steam flow rate of 2.16 mL/min and extraction time of 106 min with the coefficient of determination R2 of 0.9812. The nonlinear kinetics demonstrated the compatibility of the kinetic model with simultaneous washing and unhindered diffusion with a washing rate constant of 0.1515 min−1 and a diffusion rate constant of 0.0236 min−1. The activation energy of the washing and diffusion process was 167.43 kJ.mol−1 and 96.25 kJ.mol−1, respectively. The thermodynamic value obtained at the ΔG° value was −35.02 kJ.mol−1. The quality of pomelo peel essential oil obtained by steam distillation was characterized by its high limonene content (96.996%), determined by GC-MS.


2020 ◽  
Author(s):  
Alfredo Calderón-Cárdenas ◽  
Enrique A. Paredes-Salazar ◽  
Hamilton Varela

<div> <div> <div> <p>Activation energy is a well-known empirical parameter in chemical kinetics that characterises the dependence of the chemical rate coefficients on the temperature and provides information to compare the intrinsic activity of the catalysts. However, the determination and interpretation of the apparent activation energy in multistep reactions is not an easy task. For this purpose, the concept of degree of rate control is convenient, which comprises a mathematical approach for analyzing reaction mechanisms and chemical kinetics. Although this concept has been used in catalysis, it has not yet been applied in electrocatalytic systems, whose ability to control the potential across the solid/liquid interface is the main difference with heterogenous catalysis, and the electrical current is commonly used as a measure of the reaction rate. Herein we use the definition of ‘degree of rate control for elementary step’ to address some of the drawbacks that frequently arise with interpreting apparent activation energy as a measure of intrinsic electrocatalytic activity of electrode. For this, an electrokinetic model Langmuir-Hinshelwood-like is used for making numerical experiments and verifying the proposed ideas. The results show that to improve the catalytic activity of an electrode material, it must act upon the reaction steps with the highest normalised absolute values of degree of rate control. On the other hand, experiments at different applied voltages showed that if the electroactive surface poisoning process take place, changes in 𝐸𝑎𝑝𝑝 can not be used to compare the catalytic activity of the electrodes. Finally, the importance of making measurements at steady-state to avoid large errors in the calculations of apparent activation energy is also discussed. </p> </div> </div> </div>


Sign in / Sign up

Export Citation Format

Share Document