EFFECT OF ULTRASONIC ON COPPER ELECTROPLATING FROM THE NON-CYANIDE ALKALINE BATHS

2014 ◽  
Vol 21 (04) ◽  
pp. 1450057
Author(s):  
MINGGANG LI ◽  
SHUANGSHUANG HU ◽  
YEJIONG YANG ◽  
SHUHAN XU ◽  
XIXI ZHAO ◽  
...  

Effects of the different ultrasonic powers on copper electrodeposition from non-cyanide alkaline baths by using pyrophosphate as complexing agent were investigated by different electrochemical methods. Cyclic voltammetry and current transient measurements were used to characterize the nucleation and growth mechanism. It is very obvious that the reduction potential moves to more positive one as the ultrasonic power increases. The quartz crystal microbalance (QCM) and chronoamperometric method were used to study the relationship between the mass change and the deposition time. It was found that the current efficiency of electrolyte under 0, 60, 80 and 100 W is 91.95%, 92.14%, 89.25% and 96.11%, respectively measured by QCM measurements. The surface morphology of the electrodeposited Cu films is analyzed by scanning electron microscopy (SEM). The morphology of copper films electrodeposited under the power of 60 W and 80 W presents a compact surface and the grains are fine and uniform.

2006 ◽  
Vol 21 (6) ◽  
pp. 1512-1518 ◽  
Author(s):  
Dongwen Gan ◽  
Paul S. Ho ◽  
Yaoyu Pang ◽  
Rui Huang ◽  
Jihperng Leu ◽  
...  

The present study investigated the effect of passivation on the kinetics of interfacial mass transport by measuring stress relaxation in electroplated Cu films with four different cap layers: SiN, SiC, SiCN, and a Co metal cap. Stress curves measured under thermal cycling showed different behaviors for the unpassivated and passivated Cu films, but were essentially indifferent for the films passivated with different cap layers. On the other hand, stress relaxation measured under an isothermal condition revealed clearly the effect of passivation, indicating that interface diffusion controls the kinetics of stress relaxation. The relaxation rates in the passivated Cu films were found to decrease in the order of SiC, SiCN, SiN, and metal caps. This correlates well with previous studies on the relationship between interfacial adhesion and electromigration. A kinetic model based on coupling of interface and grain-boundary diffusion was used to deduce the interface diffusivities and the corresponding activation energies.


2011 ◽  
Vol 27 (01) ◽  
pp. 143-148 ◽  
Author(s):  
ZHENG Jing-Wu ◽  
◽  
LU Guo-Ying ◽  
QIAO Liang ◽  
JIANG Li-Qiang ◽  
...  

2006 ◽  
Vol 914 ◽  
Author(s):  
Alain Kaloyeros ◽  
Yu Zhu ◽  
Kathleen Dunn ◽  
Richard Mayti ◽  
Christopher Miller ◽  
...  

AbstractUltra-thin platinum (Pt) films grown by atomic layer deposition (ALD) have been investigated as an alternative to conventional physical vapor deposited (PVD) Cu as seed layer for copper (Cu) electroplating. The wetting angles between the electrolyte and both Pt and Cu seed layers were analyzed using sessile-drop contact-angle analysis prior to plating. Both constant current and pulse reverse current (PRC) were applied to electroplate Cu on both types of blanket seed layers. Scanning electron microscope (SEM) revealed that Cu nucleation density on ALD Pt is lower than on its PVD Cu counterpart, after 30 seconds plating using PRC. Nevertheless, Cu nuclei were observed after only 1.0 minute plating on ALD Pt surfaces, and continuous Cu films were achieved at longer plating times. To fill trench structures coated with ALD Pt/TaN, PRC was applied using the same organic-additive-free electrolyte. Initial results suggest that these seed layers were adequate for ECD fill of trenches with 200 nm feature size and aspect ratio 7:1. The composition and microstructure of the Cu films were analyzed by Auger electron spectroscopy (AES), X-ray diffraction (XRD), and cross-sectional transmission electron microscopy (TEM). Thermal stability of the Cu/Pt system was examined by annealing in forming gas at 450°C for 1 hour and subsequent analysis by XRD and TEM.


2015 ◽  
Vol 645-646 ◽  
pp. 405-410 ◽  
Author(s):  
Chang Song ◽  
Li Qun Du ◽  
Tong Yang ◽  
Lei Luo ◽  
You Sheng Tao ◽  
...  

In the micro electroforming process, the existence of electroforming layer defects caused by macro internal stress seriously limits the application and development of the micro electroforming technology. Currently, some studies have shown that ultrasonic can reduce the internal stress. But the formation process of the internal stress and the mechanism of ultrasonic stress relief in micro electroforming layer are still unclear now. In this paper, the relationship between dislocation density and internal stress under ultrasonic was studied. The results show that the ultrasonic can make the dislocation density increase and the compressive stress decrease. When the ultrasonic power is 200W, the dislocation density and the compressive stress culminate 3.8×10-15m-2 and-144.4MPa, respectively. The ultrasonic can excite the movement of dislocation proliferation, pile-up and opening, which leads to a micro plastic deformation in the crystal, and thereby releases the internal stress.


1993 ◽  
Vol 8 (8) ◽  
pp. 1845-1852 ◽  
Author(s):  
M.D. Thouless ◽  
J. Gupta ◽  
J.M.E. Harper

The reliability of integrated-circuit wiring depends strongly on the development and relaxation of stresses that promote void and hillock formation. In this paper an analysis based on existing models of creep is presented that predicts the stresses developed in thin blanket films of copper on Si wafers subjected to thermal cycling. The results are portrayed on deformation-mechanism maps that identify the dominant mechanisms expected to operate during thermal cycling. These predictions are compared with temperature-ramped and isothermal stress measurements for a 1 μm-thick sputtered Cu film in the temperature range 25–450 °C. The models successfully predict both the rate of stress relaxation when the film is held at a constant temperature and the stress-temperature hysteresis generated during thermal cycling. For 1 μm-thick Cu films cycled in the temperature range 25–450 °C, the deformation maps indicate that grain-boundary diffusion controls the stress relief at higher temperatures (>300 °C) when only a low stress can be sustained in the films, power-law creep is important at intermediate temperatures and determines the maximum compressive stress, and that if yield by dislocation glide (low-temperature plasticity) occurs, it will do so only at the lowest temperatures (<100 °C). This last mechanism did not appear to be operating in the film studied for this project.


1996 ◽  
Vol 436 ◽  
Author(s):  
R.-M. Keller ◽  
W. Sigle ◽  
S. P. Baker ◽  
O. Kraft ◽  
E. Arzt

AbstractIn-situ transmission electron microscopy (TEM) was performed to study grain growth and dislocation motion during temperature cycles of Cu films with and without a cap layer. In addition, the substrate curvature method was employed to determine the corresponding stresstemperature curves from room temperature up to 600°C. The results of the in-situ TEM investigations provide insight into the microstructural evolution which occurs during the stress measurements. Grain growth occurred continuously throughout the first heating cycle in both cases. The evolution of dislocation structure observed in TEM supports an explanation of the stress evolution in both capped and uncapped films in terms of dislocation effects.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Fei Peng ◽  
Shuang-Jiao Qin ◽  
Yu Zhao ◽  
Ge-Bo Pan

The electrochemical deposition of zinc on single-crystaln-type GaN(0001) from a sulphate solution has been investigated on the basis of electrochemical techniques including cyclic voltammetry, chronoamperometry, and Tafel plot. The morphology and crystal structure of zinc deposits have been characterized by means of scanning electron microscopy, X-ray diffraction, and energy-dispersive X-ray analysis. The result has revealed that the deposition of Zn on GaN electrode commenced at a potential of −1.12 V versus Ag/AgCl. According to the Tafel plot, an exchange current density of ~0.132 mA cm−2was calculated. In addition, the current transient measurements have shown that Zn deposition process followed the instantaneous nucleation in 10 mM ZnSO4+ 0.5 M Na2SO4+ 0.5 M H3BO3(pH = 4).


2014 ◽  
Vol 21 (01) ◽  
pp. 1450009
Author(s):  
MINGGANG LI ◽  
GUOYING WEI ◽  
JIANFANG WANG ◽  
MENG LI ◽  
XIXI ZHAO ◽  
...  

Non-cyanide alkaline bath was used to prepare copper thin films. Influences of various temperatures on deposition rates, surface morphologies and microstructures of films were investigated. Copper thin films prepared from non-cyanide alkaline bath show typical nodular structures. Copper films fabricated at higher temperature possess rough surface due to hydrolysis of complexing agents. According to the XRD patterns, all deposited films were crystalline and showed Cu (111), Cu (200) and Cu (220) peaks. The intensity of peak (200) increases gradually with the rise on bath temperatures. Films with maximum thickness (7.5 μm) could be obtained at the temperature of 40°C. From the cyclic voltammetry curve, it was found that the cathodic polarization decreased slightly with increase of bath temperatures. In addition, when the bath temperature was equal to 50°C, current efficiency could reach to 96.95%.


1994 ◽  
Vol 356 ◽  
Author(s):  
R.-M. Keller ◽  
S. Bader ◽  
R. P. Vinci ◽  
E. Arzt

AbstractThe substrate curvature technique was employed to study the mechanical properties of 0.6 μm and 1.0 μm Cu films capped with a 50 nm thick Si3N4 layer and to compare them with the mechanical properties of uncapped Cu films. The microstructures of these films were also investigated. Grain growth, diffusional creep and dislocation processes are impeded by the cap layer. This is evident in the form of high stresses at high temperatures on heating and at low temperatures on cooling. At intermediate temperatures on heating and cooling, stress plateaus a relatively low stresses exist. This can be explained by the so-called Bauschinger effect. A film thickness dependence of the stresses in the film could not be observed for capped Cu films.


Sign in / Sign up

Export Citation Format

Share Document