More on the Reference-Grounding-Based Search in Noise-Based Logic

Author(s):  
Walter C. Daugherity ◽  
Laszlo B. Kish

We point out that the exponentially fast, grounding-based search scheme in noise-based logic works mostly on core superpositions. When the superposition contains elements that are outputs of logic gate operations, the search result can be erroneous, because grounding of a reference bit can change a logic function too. Adding superpositions with a search bit of inverted signal amplitude sign (sign inversion instead of grounding) can fix the problem in special cases, but a general solution is yet to be found. Note that because phonebooks are core superpositions, the original search algorithm remains valid for phonebook lookups, for both name and number search, including fractions of names or numbers.

2016 ◽  
Vol 797 ◽  
pp. 322-344 ◽  
Author(s):  
Yuriy A. Semenov ◽  
Guo Xiong Wu

A general similarity solution for water-entry problems of a wedge with its inner angle fixed and its sides in expansion is obtained with flow detachment, in which the speed of expansion is a free parameter. The known solutions for a wedge of a fixed length at the initial stage of water entry without flow detachment and at the final stage corresponding to Helmholtz flow are obtained as two special cases, at some finite and zero expansion speeds, respectively. An expanding horizontal plate impacting a flat free surface is considered as the special case of the general solution for a wedge inner angle equal to ${\rm\pi}$. An initial impulse solution for a plate of a fixed length is obtained as the special case of the present formulation. The general solution is obtained in the form of integral equations using the integral hodograph method. The results are presented in terms of free-surface shapes, streamlines and pressure distributions.


Grover’s quantum search algorithm allows quadratic speedup in unsorted search problem by utilizing amplitude amplification trick in quantum computing. In this paper, an approach to implement Grover’s quantum search algorithm is proposed. The implementation is done using Rigetti Forest and Python. The testing and evaluation processes are carried on in two computers with different hardware specifications to derive more information from the result. The results are measured in user time and compared with implementation from Quantum Computing Playground. The user time of this implementation for 10 qubits and 1024 data is slower compared to Quantum Computing Playground’s implementation. The proposed implementation can be improved by calculating the probability of Grover’s quantum search algorithm in finding the appropriate search result.


Author(s):  
Mohamed Zanaty ◽  
Hubert Schneegans ◽  
Ilan Vardi ◽  
Simon Henein

Abstract Binary logic operations are the building blocks of computing machines. In this paper, we present a new programmable binary logic gate based on programmable multistable mechanisms (PMM), which are multistable structures whose stability behavior depends on modifiable boundary conditions as defined and analyzed in our previous work. The logical state of a PMM is defined by its stability and logical operations are implemented by modifying the stability behavior of the mechanism. Our programmable logic device has two qualitatively different sets of inputs. The first set determines the logic function to be computed. The second set represents the logical inputs. The output is a single logical value, “true” if the mechanism changes state and “false” otherwise. In this way, we are able to mechanically implement a set of binary logical operations. This implementation is validated using an analytical model characterizing the qualitative stability behavior of the mechanism. This was further verified using finite element analysis and experimental demonstration.


2015 ◽  
Vol 4 (4) ◽  
Author(s):  
Muhammad Jamil ◽  
Kashif Ali Abro ◽  
Najeeb Alam Khan

AbstractIn this paper the helical flows of fractionalized Maxwell fluid model, through a circular cylinder, is studied. The motion is produced by the cylinder that at the initial moment begins to rotate around its axis with an angular velocity Omegatp, and to slide along the same axis with linear velocity Utp. The solutions that have been obtained using Laplace and finite Hankel transforms and presented in series form in terms of the newly defined special function M(z), satisfy all imposed initial and boundary conditions. Moreover, the corresponding solutions for ordinary Maxwell and Newtonian fluid obtained as special cases of the present general solution. Finally, the influence of various pertinent parameters on fluid motion as well as the comparison among different fluids models is analyzed by graphical illustrations.


2020 ◽  
pp. 95-99
Author(s):  
Jaishankar B ◽  
Govindaraj V ◽  
Sri kanth

In the modern world, the digital signal processing embeds more in real time applications. Several researchers focused on filtering process to identify the limitation in traditional methods. In this article, the meta-heuristic algorithm is deployed for optimizing infinite impulse response (IIR) filter design. The traditional IIR filter results create computational complexity and its performance is worse in the case of a noisy environment. In signal processing, IIR plays several roles in filtering and monitoring the signal amplitude. The African Buffalo Optimization (ABO) is quite easy for implementation and its performance outcomes solved many problems in various domains. Hence, it is selected for solving IIR filter problems for obtaining optimal filter coefficients. Initially, IIR filter is designed for different orders under ABO concept. The ABO based IIR filter’s performance is superior to those obtained by Genetic Algorithm and cuckoo search algorithm. The proposed method’s performance result proves that it has a smaller magnitude error and phase error with fast convergence rate.


Author(s):  
Nihad Dib ◽  
Umar Al-Sammarraie

This paper investigates the optimal design of symmetric switching CMOS inverter using the Symbiotic Organisms Search (SOS) algorithm. SOS has been recently proposed as an effective evolutionary global optimization method that is inspired by the symbiotic interaction strategies between different organisms in an ecosystem. In SOS, the three common types of symbiotic relationships (mutualism, commensalism, and parasitism) are modeled using simple expressions, which are used to find the global minimum of the fitness function. Unlike other optimization methods, SOS has no parameters to be tuned, which makes it an attractive and easy-to-implement optimization method. Here, SOS is used to design a high speed symmetric switching CMOS inverter, which is considered the most fundamental logic gate. SOS results are compared to those obtained using several optimization methods, like particle swarm optimization (PSO), genetic algorithm (GA), differential evolution (DE), and other ones, available in the literature. It is shown that the SOS is a robust straight-forward evolutionary algorithm that can compete with other well-known advanced methods.


Author(s):  
A. V. Kavinov

The search for solutions of nonlinear stationary systems of ordinary differential equations (ODE) is sometimes very complicated. It is not always possible to obtain a general solution in an analytical form. As a consequence, a qualitative theory of nonlinear dynamical systems has been developed. Its methods allow us to investigate the properties of solutions without finding a general solution. Numerical methods of investigation are also widely used.In the case when it is impossible to find an analytically general solution of the ODE system, sometimes, nevertheless, it is possible to find its first integral. There is a number of known results that make it possible to obtain the first integral for certain special cases.The article deals with the method for obtaining the first integrals of ODE systems of the third order, based on the fact of integrability of the involutive distribution.The method proposed in the paper allows us to obtain the first integral of a nonlinear ODE system of the third order in the case when a vector field, which generates an involutive distribution of dimension 2 together with the vector field of the right-hand side of a given ODE system, is known. In this case, the solution of a certain sequence of Cauchy problems allows us to construct a level surface of the function of the first integral containing the given point of the state space of the system. Using the method of least squares, in a number of cases it is possible to obtain an analytic expression for the first integral.The article gives examples of the method application to two ODE systems, namely to a simple nonlinear third-order system and to the Lorentz system with special parameter values. The article shows how the first integrals can be obtained analytically using the method developed for the two systems mentioned above.


2021 ◽  
Author(s):  
Abdulqader Mahmoud ◽  
Frederic Vanderveken ◽  
Christoph Adelmann ◽  
Florin Ciubotaru ◽  
Said Hamdioui ◽  
...  

By its very nature, Spin Wave (SW) interference provides intrinsic support for Majority logic function evaluation. Due to this and the fact that the 3-input Majority (MAJ3) gate and the Inverter constitute a universal Boolean logic gate set, different MAJ3 gate implementations have been proposed. However, they cannot be directly utilized for the construction of larger SW logic circuits as they lack a key cascading mechanism, i.e., fan-out capability. In this paper, we introduce a novel ladder-shaped SW MAJ3 gate design able to provide a maximum fan-out of 2 (FO2). The proper gate functionality is validated by means of micromagnetic simulations, which also demonstrate that the amplitude mismatch between the two outputs is negligible proving that an FO2 is properly achieved. Additionally, we evaluate the gate area and compare it with SW state-of-the-art and 15nm CMOS counterparts working under the same conditions. Our results indicate that the proposed structure requires 12x less area than the 15 nm CMOS MAJ3 gate and that at the gate level the fan-out capability results in 16% area savings, when compared with the state-of-the-art SW majority gate counterparts.


2020 ◽  
Vol 87 (11) ◽  
Author(s):  
V. R. Feldgun ◽  
D. Z. Yankelevsky

Abstract A review of the pertinent literature related to the dynamic expansion of a spherical/cylindrical cavity shows that all the solutions with kinematic boundary conditions deal with a constant velocity at the cavity boundary. This paper develops a new general solution of the nonstationary dynamic problem of cavity expansion, which allows the application of time-dependent motion conditions at the cavity boundary. This solution can be used, for example, in the development of approximate approaches for projectiles penetrating with a non-constant velocity into different targets. Due to the complexity of the nonlinear nonstationary problem, an analytical solution of the problem may be developed if simplified constitutive relationships are used. In the present model, a simplified material model with a locked equation of state and a linear shear failure relationship is implemented. This solution may be applied to different materials such as concrete, soil, and rock. Special cases of the newly developed nonstationary solution are compared with different spherical and cylindrical cavity expansions solutions reported in the literature, and a good agreement is obtained. The capability of the present model is demonstrated in a following investigation of representative cases of cavity expansion with zero, constant, and variable acceleration of the cavity boundary. A significant difference in the stress variation for the different cases is shown. Along with the general solution which deals with an elastic–plastic region, a simplified solution which disregards the contribution of the elastic region is presented and the evaluation of the elastic region effect may be assessed.


2003 ◽  
Vol 125 (2) ◽  
pp. 169-177 ◽  
Author(s):  
M. M. Yovanovich

General solution for thermal spreading and system resistances of a circular source on a finite circular cylinder with uniform side and end cooling is presented. The solution is applicable for a general axisymmetric heat flux distribution which reduces to three important distributions including isoflux and equivalent isothermal flux distributions. The dimensionless system resistance depends on four dimensionless system parameters. It is shown that several special cases presented by many researchers arise directly from the general solution. Tabulated values and correlation equations are presented for several cases where the system resistance depends on one system parameter only. When the cylinder sides are adiabatic, the system resistance is equal to the one-dimensional resistance plus the spreading resistance. When the cylinder is very long and side cooling is small, the general relationship reduces to the case of an extended surface (pin fin) with end cooling and spreading resistance at the base. The special case of an equivalent isothermal circular source on a very thin infinite circular disk is presented.


Sign in / Sign up

Export Citation Format

Share Document