Structurally engineered TiO2–SiO2 monolithic designs for the enhanced photocatalytic degradation of organic textile dye pollutants

2017 ◽  
Vol 10 (02) ◽  
pp. 1750006 ◽  
Author(s):  
T. V. L. Thejaswini ◽  
D. Prabhakaran ◽  
M. Akhila Maheswari

The rapid removal of organic textile dye (Acid Red-85) using mesoporous TiO2–SiO2 monoliths as photocatalyst material has been studied. The 7:3 mole% ratios of TiO2 and SiO2 within the framework provided a well-ordered cage-like monolithic design with high surface area and pore volume that facilitated faster and efficient degradation of the dye effluents. The photocatalyst has been characterized using XRD, TEM-SAED, UV–Vis-DRS, PL, TGA and BET analysis. The influence of various photocatalytic operational parameters, such as solution pH, dopant stoichiometry, catalyst dosage, dye concentration, kinetics, photo-oxidizers, etc., which could influence on the degradation efficiency, has been studied.

2016 ◽  
Vol 75 (2) ◽  
pp. 350-357
Author(s):  
Graham Dawson ◽  
Wei Chen ◽  
Luhua Lu ◽  
Kai Dai

The adsorption properties of two nanomorphologies of trititanate, nanotubes (TiNT) and plates (TiNP), prepared by the hydrothermal reaction of concentrated NaOH with different phases of TiO2, were examined. It was found that the capacity for both morphologies towards methylene blue (MB), an ideal pollutant, was extremely high, with the TiNP having a capacity of 130 mg/g, higher than the TiNT, whose capacity was 120 mg/g at 10 mg/L MB concentration. At capacity, the well-dispersed powders deposit on the floor of the reaction vessel. The two morphologies had very different structural and adsorption properties. TiNT with high surface area and pore volume exhibited exothermic monolayer adsorption of MB. TiNP with low surface area and pore volume yielded a higher adsorption capacity through endothermic multilayer adsorption governed by pore diffusion. TiNP exhibited a higher negative surface charge of −23 mV, compared to −12 mV for TiNT. The adsorption process appears to be an electrostatic interaction, with the cationic dye attracted more strongly to the nanoplates, resulting in a higher adsorption capacity and different adsorption modes. We believe this simple, low cost production of high capacity nanostructured adsorbent material has potential uses in wastewater treatment.


2021 ◽  
Vol 11 (21) ◽  
pp. 10451
Author(s):  
Khalid Mohammed Alotaibi ◽  
Abdurrahman A. Almethen ◽  
Abeer M. Beagan ◽  
Hassan M. Al-Swaidan ◽  
Ashfaq Ahmad ◽  
...  

Magnetic mesoporous silica nanoparticles (Fe3O4-MSNs) were successfully synthesized with a relatively high surface area of 568 m2g−1. Fe3O4-MSNs were then modified with poly(2-diethyl aminoethyl methacrylate) (PDEAEMA) brushes using surface-initiated ARGET atom transfer radical polymerization (ATRP) (Fe3O4@MSN-PDMAEMA). Since the charge of PDEAEMA is externally regulated by solution pH, tertiary amines in the polymer chains were quaternized using 2-iodoethanol to obtain cationic polymer chains with a permanent positive charge (Fe3O4@MSN-QPDMAEMA). The intensity of the C−O peak in the C1s X-ray photoelectron spectrum increased after reaction with 2-iodoethanol, suggesting that the quaternization process was successful. The applicability of the synthesized materials on the removal of methyl orange (MO), and sunset yellow (E110) dyes from an aqueous solution was examined. The effects of pH, contact time, and initial dyes concentrations on the removal performance were investigated by batch experiments. The results showed that the Fe3O4@MSN-PDMAEMA sample exhibited a weak adsorption performance toward both MO and E110, compared with Fe3O4@MSN-QPDMAEMA at a pH level above 5. The maximum adsorption capacities of MO and E110 using Fe3O4@MSN-QPDMAEMA were 294 mg g−1 and 194.8 mg g−1, respectively.


2020 ◽  
Vol 9 (4) ◽  
pp. 93-99
Author(s):  
Hung Mac Van ◽  
Tuan Vu Anh

Corals-like molybdenum disulfide (MoS2) have been successfully synthesized via the hydrothermal method. The as-prepared MoS2 material with a high surface area of 83.9 m2.g-1 was used for the removal of tartrazine from an aqueous solution. The effects of parameters including contact time, MoS2 dosage, and solution pH on adsorption capacity were studied. The optimal dosage of MoS2 for removing tartrazine was 0.08 g and the removal efficiency of tartrazine reached 81.5 % for 100 min of adsorption. The adsorption kinetics studies were carried out using pseudo-first-order, pseudo-second-order, and intra-particle diffusion models. The results showed that the pseudo-second-kinetic model better described the adsorption kinetics of tartrazine on MoS2 and film diffusion was the rate-limiting step. In addition, the adsorption capacity of MoS2 was also performed with various organic dyes such as nile blue, janus green B, and congo red.


2017 ◽  
Vol 1 (6) ◽  
pp. 1414-1424 ◽  
Author(s):  
Michael Cox ◽  
Robert Mokaya

Mesoporous carbons (with up to 95% of pore volume from mesopores) with surface area and pore volume of ∼4000 m2 g−1 and ∼3.6 cm3 g−1, respectively, are excellent CO2 absorbers under pre combustion conditions and can store 55 mmol g−1 (i.e., 2.42 g g−1) or 930 g l−1 at 25 °C and 50 bar.


2019 ◽  
Vol 9 (21) ◽  
pp. 4486 ◽  
Author(s):  
Candelaria Tejada-Tovar ◽  
Angel Darío Gonzalez-Delgado ◽  
Angel Villabona-Ortiz

The removal of water pollutants has been widely addressed for the conservation of the environment, and novel materials are being developed as adsorbent to address this issue. In this work, different residual biomasses were employed to prepare biosorbents applied to lead (Pb(II)) ion uptake. The choice of cassava peels (CP), banana peels (BP), yam peels (YP), and oil palm bagasse (OPB) was made due to the availability of such biomasses in the Department of Bolivar (Colombia), derived from agro-industrial activities. The materials were characterized by ultimate and proximate analysis, Fourier Transform Infrared Spectroscopy (FTIR), Brunauer-Emmett-Teller analysis (BET), Scanning Electron Microscopy (SEM), and Energy Dispersive X-Ray Spectroscopy (EDS) in order to determine the physicochemical properties of bioadsorbents. The adsorption tests were carried out in batch mode, keeping the initial metal concentration at 100 ppm, temperature at 30 °C, particle size at 1 mm, and solution pH at 6. The experimental results were adjusted to kinetic and isotherm models to determine the adsorption mechanism. The remaining concentration of Pb(II) in solution was measured by atomic absorption at 217 nm. The functional groups identified in FTIR spectra are characteristic of lignocellulosic materials. A high surface area was found for all biomaterials with the exception of yam peels. A low pore volume and size, related to the mesoporous structure of these materials, make these bioadsorbents a suitable alternative for liquid phase adsorption, since they facilitate the diffusion of Pb(II) ions onto the adsorbent structure. Both FTIR and EDS techniques confirmed ion precipitation onto adsorbent materials after the adsorption process. The adsorption tests reported efficiency values above 80% for YP, BP, and CP, indicating a good uptake of Pb(II) ions from aqueous solution. The results reported that Freundlich isotherm and pseudo-second order best fit experimental data, suggesting that the adsorption process is governed by chemical reactions and multilayer uptake. The future prospective of this work lies in the identification of alternatives to reuse Pb(II)-contaminated biomasses after heavy metal adsorption, such as material immobilization.


2016 ◽  
Vol 35 (6) ◽  
pp. 535-541 ◽  
Author(s):  
Hongying Xia ◽  
Jian Wu ◽  
Chandrasekar Srinivasakannan ◽  
Jinhui Peng ◽  
Libo Zhang

AbstractThe present work attempts to convert bamboo into a high surface area activated carbon via microwave heating. Different chemical activating agents such as KOH, NaOH, K2CO3 and Na2CO3 were utilized to identify a most suitable activating agent. Among the activating agents tested KOH was found to generate carbon with the highest porosity and surface area. The effect of KOH/C ratio on the porous nature of the activated carbon has been assessed. An optimal KOH/C ratio of 4 was identified, beyond which the surface area as well as the pore volume were found to decrease. At the optimized KOH/C ratio the surface area and the pore volume were estimated to be 3,441 m2/g and 2.093 ml/g, respectively, with the significant proportion of which being microporous (62.3%). Activated carbon prepared under the optimum conditions was further characterized using Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). Activated carbons with so high surface area and pore volume are very rarely reported, which could be owed to the nature of the precursor and the optimal conditions of mixture ratio adopted in the present work.


2007 ◽  
Vol 19 (17) ◽  
pp. 4367-4372 ◽  
Author(s):  
Ajayan Vinu ◽  
Pavuluri Srinivasu ◽  
Dhanashri P. Sawant ◽  
Toshiyuki Mori ◽  
Katsuhiko Ariga ◽  
...  

2007 ◽  
Vol 100 (1-3) ◽  
pp. 1-5 ◽  
Author(s):  
Jun Jie Niu ◽  
Jian Nong Wang ◽  
Ying Jiang ◽  
Lian Feng Su ◽  
Jie Ma

2012 ◽  
Vol 66 (1) ◽  
pp. 179-184 ◽  
Author(s):  
Ş. Gül ◽  
O. Eren ◽  
Ş. Kır ◽  
Y. Önal

The objective of this study is to compare the performances of catalytic ozonation processes of two activated carbons prepared from olive stone (ACOS) and apricot stone (ACAS) with commercial ones (granular activated carbon-GAC and powder activated carbon-PAC) in degradation of reactive azo dye (Reactive Red 195). The optimum conditions (solution pH and amount of catalyst) were investigated by using absorbencies at 532, 220 and 280 nm wavelengths. Pore properties of the activated carbon (AC) such as BET surface area, pore volume, pore size distribution, and pore diameter were characterized by N2 adsorption. The highest BET surface area carbon (1,275 m2/g) was obtained from ACOS with a particle size of 2.29 nm. After 2 min of catalytic ozonation, decolorization performances of ACOS and ACAS (90.4 and 91.3%, respectively) were better than that of GAC and PAC (84.6 and 81.2%, respectively). Experimental results showed that production of porous ACs with high surface area from olive and apricot stones is feasible in Turkey.


2015 ◽  
Vol 13 (1) ◽  
Author(s):  
Eleni A. Deliyanni ◽  
George Z. Kyzas ◽  
Kostas S. Triantafyllidis ◽  
Kostas A. Matis

AbstractThis work is a systematic review of the literature over the past decade of the application of activated carbon (microporous or mesoporous) as adsorbents for the removal of heavy metals, focusing especially on lead (Pb) and arsenic (As) ions from the aqueous phase. Classical examples from our lab are also given. Activated carbon is known to provide a high surface area for adsorption. Generally, surface modification is typically required, such as oxidation, treatment with ammonia or even impregnation with ferric ion, etc. and the adsorbent material may originate from various sources. The pristine materials, after modification and those after batch-wise adsorption, were characterized by available techniques (BET analysis, Fourier transform infrared spectroscopy, scanning electron microscopy, thermal analyses, X-ray photoelectron spectroscopy). Adsorption isotherms, thermodynamics and kinetics of the process are also discussed. Selected studies from the literature are examined in comparison with other adsorbents. The role of chemistry in the metals adsorption/removal was investigated.


Sign in / Sign up

Export Citation Format

Share Document