Optical, electrical, and structural properties of Fe-doped CuAlO2 thin films

2019 ◽  
Vol 12 (01) ◽  
pp. 1850106
Author(s):  
Xueping Zhao ◽  
Ming Zhang ◽  
Pucun Bai ◽  
Xiaohu Hou ◽  
Fei Liu ◽  
...  

The influence of Fe content on the structural and optoelectronic properties of Fe-doped CuAlO2 films was studied. X-ray diffraction (XRD) results revealed that all annealed films had a pure delafossite phase. Optical transmittance spectra showed that Fe-doped films exhibit an obvious change in the 340–380[Formula: see text]nm region compared to undoped CuAlO2, and optical band gap analyses confirmed the formation of impurity band levels within the bandgap. The average transmittance of CuAl[Formula: see text]FexO2 is around 45–55% in the visible range, and transmittance in this region decreases with increasing Fe concentration. Increased conductivity was observed due to the introduction of Fe and subsequent carrier concentration enhancement. The conductivity in a CuAl[Formula: see text]Fe[Formula: see text]O2 film was maximized at [Formula: see text][Formula: see text]S[Formula: see text]cm[Formula: see text].

2016 ◽  
Vol 81 (3) ◽  
pp. 323-332 ◽  
Author(s):  
Mirela Vaida ◽  
Narcis Duteanu ◽  
Ioan Grozescu

This paper presents results of the investigations regarding the obtaining and the characterization of the thermoelectric material Zn4Sb3 and (Zn1-xMx)4Sb3 where M = Ag and / or Sn. Obtaining of the materials was realized by melting high purity precursors into an oven where were kept isothermally for 12 hours at 1173 K. X-ray diffraction and scanning electron microscopy were used for structural and morphologic characterization. Optical band gap for each sample was determined from absorbance spectra recorded in the visible range 240-400 nm at room temperature. Electrical resistivity as function of temperature was measured and the electrical band gap was estimated for each of the obtained samples. The semiconducting behavior of the materials was reflected by these.


2006 ◽  
Vol 13 (01) ◽  
pp. 87-92 ◽  
Author(s):  
A. ASHOUR

Titanium oxide thin films were prepared by sputtering technique onto glass substrates at room temperature (RT). The structure of the films was confirmed using X-ray diffraction (XRD) and revealed the stoichiometry with an O and Ti ratio of 2. The deposited films at RT were found to be amorphous and the films annealed at 300 and 400°C for 2 h were crystalline with orthorhombic structure. The lattice constants and grain size of the film are calculated. The electrical resistivity was found to depend on the film thickness and decreased with increasing the film thicknesses. The optical constants of the films such as the refractive index, extinction coefficient, and absorption coefficient were also determined using the optical transmittance measurements, and the results were discussed. The optical band gap varies from 3.2 to 3.5 eV as a function of oxygen/argon ratios.


2019 ◽  
Vol 26 (04) ◽  
pp. 1850183 ◽  
Author(s):  
FENG JIANG ◽  
ZHIYONG PANG ◽  
HUIMIN YUAN ◽  
ZHIXIAN WEI ◽  
WANFENG XIE ◽  
...  

Needle-shaped nanostructured tris(8-hydroxyquinoline) aluminum nanowires (Alq3) have been obtained by annealing Alq3 amorphous films at 150∘C which is lower than the glass transition temperature of Alq3 (172∘C). The growth of Alq3 nanowires is attributed to the migration and stacking of Alq3 molecules which acquire thermal energy from the annealing process. X-ray diffraction analysis and scanning electronic microscopy spectra show that the Alq3 nanowires are composed of the well-known [Formula: see text]-phase Alq3. The intensity of the photoluminescence spectra firstly increases and then decreases as the annealing time increases, along with a spectral blue shift. The optical transmittance spectra of the annealed Alq3 films show a smaller average absorption in the visible range and a wider optical bandgap compared with that of the amorphous films, as a result of the decrease of [Formula: see text] overlapping in the Alq3 molecules.


2011 ◽  
Vol 239-242 ◽  
pp. 2752-2755
Author(s):  
Fan Ye ◽  
Xing Min Cai ◽  
Fu Ping Dai ◽  
Dong Ping Zhang ◽  
Ping Fan ◽  
...  

Transparent conductive Cu-In-O thin films were deposited by reactive DC magnetron sputtering. Two types of targets were used. The first was In target covered with a fan-shaped Cu plate of the same radius and the second was Cu target on which six In grains of 1.5mm was placed with equal distance between each other. The samples were characterized with scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), UV/VIS spectrophotometer, four-probe measurement etc. SEM shows that the surfaces of all the samples are very smooth. EDX shows that the samples contain Cu, In as well as O, and different targets result in different atomic ratios of Cu to In. A diffraction peak related to rhombohedra-centered In2O3(012) is observed in the XRD spectra of all the samples. For both the two targets, the transmittance decreases with the increase of O2flow rates. The direct optical band gap of all the samples is also estimated according to the transmittance curve. For both the two targets, different O2flow rates result in different sheet resistances and conductivities. The target of Cu on In shows more controllability in the composition and properties of Cu-In-O films.


2021 ◽  
Author(s):  
Rahma Rahzelli Zrelli ◽  
Fathia Chehimi-Moumen ◽  
Dalila Ben Hassen-Chehimi ◽  
Malika Trabelsi-Ayadi

Abstract The synthesis of the diphosphate HYP2O7·3H2O was made via soft chemistry route from evaporation of aqueous solution at room temperature. The obtained compound, was characterized by means of X-ray diffraction (XRD) and infrared spectroscopy (IR). The results showed a high purity phase. IR spectrum of this diphosphate revealed usual signals related to P2O7 diphosphate group and water molecules. The thermal decomposition of the synthesized product by DTA / TG proceeded through four stages leading to the formation of the Y2P4O13 as a final product. On the other hand, its decomposition by CRTA took place in three stages leading to the formation of the anhydrous diphosphate HYP2O7 as a final product. X-ray powder diffraction and infrared spectroscopy were used to identify these materials. Furthermore the electrical properties of the HYP2O7 were investigated through impedance complex analysis. Modest conductivity has been observed in this material at relatively medium temperature range. Activation energy of 0.67 and 1.44 eV, was deduced from the corresponding Arrhenius plot.The optical band gap of the title compound is calculated and found to be 2.71 eV.


2015 ◽  
Vol 9 (3) ◽  
pp. 169-173 ◽  
Author(s):  
Yahia Elbashar

Homogeneous glass samples with different compositions 42(P2O5)?40 (ZnO)?(16?x)(K2O)?2 (Bi2O3)?x(Cu2O) (where x = 1, 2 and 3mol%) were prepared by conventional melt-quenched technique under controlled conditions. The structure of the prepared glass samples was investigated by X-ray diffraction. Optical properties (transmittance and reflectance) of the glasses were measured in the wavelength range 200-900 nm. The optical band gap energy of the investigated glasses with 1, 2 and 3mol% Cu2O was estimated from absorption data using the Mott and Davis relation and found to be 2.33, 2.45 and 2.53 eV, respectively. The mechanism of optical absorption was found to be direct. The band tail width was also estimated and found to lay in the acceptable range. Refractive index, absorption coefficient, extinction coefficient and real/imaginary parts of dielectric constants were calculated. Further to this, some theoretical investigation of the spectral problems was carried out. The investigation was based on finite difference method.


2019 ◽  
Vol 1 (1) ◽  
pp. 42-45
Author(s):  
Tamiloli Devendhiran ◽  
Keerthika Kumarasamy ◽  
Mei–Ching Lin

Single crystals of 2-Aminothiazole 3,5-Dinitrobenzoic acid has been synthesized and good quality optical crystals were grown by slow evaporation technique at room temperature. The crystallinity nature of the grown crystal was confirmed from X-ray diffraction technique. An optical transmittance study was also carried out by UV – Vis spectra. FTIR spectra confirm the presence of functional groups in the grown crystal. The dielectric measurements were carried out in the range of 50Hz to 2MHz. The dielectric constant was seen to increase exponentially at lower frequencies. The microhardness studies were carried out using Vickers hardness indenter. Photoluminescence study shows that maximum emission occurs at 435nm.


2018 ◽  
Vol 29 (1) ◽  
pp. 168
Author(s):  
Tunis Balassim Hassan

Pure and Nickel oxide doped chromium (III) oxide (Cr2O3) nanoparticals are synthesized by hydrothermal technique. The effect of dopant Ni concentration on the structural behavior of Cr2O3 nanoparticles was examined by X-ray diffraction. The average crystallite size of the synthesized nanoparticles was measured from XRD patterns using Scherrer equation and was decreased from 22nm to 12.9 nm with the increasing Nio concentration in Cr2O3 from (0, 0.01, 0.06, and 0.10). Morphologies and compositional elements of the synthesized nanoparticles were observed by the field emission scanning electron microscopy (FESEM) and energy dispersive X-ray (EDX) spectroscopy, respectively. The optical property of the samples was measured by ultraviolet - visible (UV-Vis.) absorption spectroscopy. The observed optical band gap value ranges from 2.3eV to 2.5eV for Ni doped nanoparticles


2021 ◽  
Author(s):  
T. Shiyani ◽  
Indrani Banerjee ◽  
Santosh K. Mahapatra ◽  
Asim K Ray

Abstract Photoelectrochemical properties have been investigated for flexible ZnO/ITO/PET photoelectrodes. ZnO was spin coated on ITO/PET substrate with thickness of about 310 nm. The high crystalline structure of ZnO was studied using x-ray diffraction pattern. A value of 3.4 eV has been estimated for optical band gap from its absorption spectra. The flexible ZnO photoelectrode was demonstrated to generate photoelectrochemical current. Values of 1.022 and 0.714 were found to be for photo switching and photoresponsivity, respectively. ZnO/ITO/PET can be used as a substrate for making flexible hybrid PEC devices to generate solar power and solar fuels.


2017 ◽  
Vol 31 (16) ◽  
pp. 1750180 ◽  
Author(s):  
K. Chandra Sekhar ◽  
Abdul Hameed ◽  
G. Ramadevudu ◽  
M. Narasimha Chary ◽  
Md. Shareefuddin

Lead halo borate glass systems containing manganese ions have been investigated to study the role of halide ions on the physical, optical and EPR studies. The amorphous phase of the prepared glass samples [Formula: see text]PbX2–(30[Formula: see text])PbO–69.5B2O3–0.5MnO2 with X = F, Cl and Br and [Formula: see text] mol% was confirmed from their X-ray diffraction spectra. Ionic radii of the halides played an important role in the physical properties. From the optical absorption spectra, optical band gap and Urbach energy values were evaluated. The EPR spectra have shown a six-line hyperfine (HF) structure centered at [Formula: see text] and attributed to Mn[Formula: see text] centers in octahedral symmetry. The other signals at [Formula: see text] and 4.3 were attributed to the rhombic surroundings of Mn[Formula: see text] ions. The negative shift in [Formula: see text]-value revealed highly ionic environment around the Mn[Formula: see text] ion in the glass hosts. The HF splitting constant (A), number of spins (N) and susceptibility [Formula: see text] values of the prepared glasses were also reported.


Sign in / Sign up

Export Citation Format

Share Document