Influence of NaOH Solution Concentration on Nickel Aqueous Corrosion Using The Four Points Electrochemical Method

2012 ◽  
Vol 608-609 ◽  
pp. 1337-1341
Author(s):  
Hong Liang Chen ◽  
Ji Song Yang ◽  
Yan Wang ◽  
Hui Ying Li ◽  
Xin Xin Li ◽  
...  

Silicalite-1 membranes were successfully synthesized on α-Al2O3 tubes by in-situ hydrothermal synthesis after filling the tubes with water and glycerol mixtures, and all the membranes show high concentration performance towards ethanol/water mixtures after pretreating tubes with different NaOH solution. The results show that the flux enhances with the enhancement of NaOH solution concentration, but the separation selectivity decreases with the enhancement of NaOH solution concentration. After pretreating the α-Al2O3 tubes with different NaOH solution, the weight of all the α-Al2O3 tube decreases, but the Si/Al ratio increases, which shows that suitable pretreatment of α-Al2O3 is useful for improving the hydrophobicity of silicalite-1 membranes.


2020 ◽  
Vol 841 ◽  
pp. 166-170
Author(s):  
Phattharachai Maichin ◽  
Teewara Suwan ◽  
Peerapong Jitsangiam ◽  
Prinya Chindaprasirt

High demand for using parts of natural materials, e.g., cores, fibers or leaves, as alternative additives are being increased. The main reasons are that natural materials can be served as renewable and eco-friendly choices such a sustainable development. Nevertheless, some limitations of applying those natural products, such as biodegradation, UV degradation, or weak bonding, are raised and need to be modified before further handling. One of the modification techniques for bio-based materials is chemical treatment by using alkaline solution (alkalization). Treatment process allows the plant's fiber to have fewer impurities as well as to increase the bonding on its contacting surface area. This research focuses on (i) effects of NaOH solution concentration on the pre-treatment properties of hemp fibers and (ii) self-treatment behavior of hemp fiber in geopolymer composites. The results show that the concentration of NaOH solution directly affected the pre-treatment process of hemp fiber as higher concentration from 1, 3, 5, 8, 10 to 12 Molar provided more vanishing level of fiber impurities, indicated by Contact Angle (CA) measurement and Fourier Transform Infrared (FT-IR) Spectroscopy analysis. With the concept of alkaline treatment, the self-treatment process was therefore applied for hemp fiber incorporated in alkaline-activated geopolymer matrix. The results illustrate the self-treatment behavior of hemp fiber in geopolymer composites, which could improve the final performances of the hardened products without conventional pre-treatment process.


2013 ◽  
Vol 726-731 ◽  
pp. 1544-1547
Author(s):  
Wei De Lu ◽  
Zhan Qing Ma ◽  
Jun Feng Rao

In this study, the high performance ion chromatography integrated pulsed amperometric detection (HPIC-IPAD) was appliedfor the first time to detect 10 sulfonamides. In this experiment,we used Dionex AS18 (250mm×2mm) and AG18 (50mm×2mm) columnsfilled with an anion exchange resin, with 14 mmol / L NaOH solution concentration. The Analysis temperature was 30 ° C, the flow rate was 0.25 mL / min, and the injection volume was 10 μL. The detection was through pulsed amperometric detection cell with Au electrode and reference electrode pH-Ag/AgCl as working electrodes. Take the standard stock solution compounding 0.06,0.15,0.30,1.5,3.0 mg / L standard solutions respectively,build linear regression on chromatographic peak area as Y and analyte mass concentration of as X (mg / L). In the range of 0.06-3.0 mg / L, the 10 sulfonamides response appeared a linear relationship (R> 0.9989). This method can be considered for the detection of trace sulfonamides substances in cosmetics, food, and feed.


2017 ◽  
Author(s):  
W. M. W. Ibrahim ◽  
K. Hussin ◽  
M. M. A. Abdullah ◽  
A. A. Kadir ◽  
L. M. Deraman

2011 ◽  
Vol 332-334 ◽  
pp. 1764-1768 ◽  
Author(s):  
Wei Shu ◽  
Chang Fa Xiao ◽  
Xiao Yu Hu ◽  
Shuo Mei

Poly (vinyl chloride) /poly (acrylonitrile) (PVC/PAN) hollow fiber membrane was prepared by phase inversion method and it was hydrolyzed in different NaOH solution concentration. After hydrolysis modified, the change of surface characteristic of the PVC/PAN hollow fiber membrane was described by Fourier transform infrared attenuated total reflection spectroscopy (FTIR-ATR) and water contact angle. Morphological structures of membranes were observed by field-emission scanning electron microscope (FESEM). Protein filtration was employed to evaluate the antifouling performance of the membrane. All these results demonstrated that PVC/PAN hollow fiber membrane modified by hydrolysis showed high permeation flux, good hydrophilicity and antifouling.


2012 ◽  
Vol 538-541 ◽  
pp. 2322-2328 ◽  
Author(s):  
Jing Zhong Kuang ◽  
Xiang Chuan Zhao ◽  
Fang Shi ◽  
Hai Ying Cao

Gepolymeric material is a new building material, which not only has the characteristics of organic polymer, ceramic and cement but also unique properties. The effects of four factors on the strength of fly ash and metakaolin based geopolymer were discussed with the orthogonal tests in this study, including fly ash content, NaOH solution concentration, solid-liquid ratio and the content of sodium silicate in the liquid phase. The results show that: content of fly ash 30%, NaOH solution concentration 12mol/L, solid-to-liquid ratio 4.5 and the content of sodium silicate in the liquid phase 65% is the best condition preparation of fly ash and metakaolin based geopolymer.


2015 ◽  
Vol 1107 ◽  
pp. 712-715
Author(s):  
Anees A. Al-Hamzawi ◽  
M.S. Jaffar ◽  
Nada F. Tawfiq ◽  
Murtadha Sh. Aswood

In the current study, the bulk etch rate VBof solid state nuclear track detectors SSNTDs CR-39 have been examined at different concentrations of NaOH solution ranged from 4N to 8N and different temperatures of NaOH solution (50, 60, 70, 80°C) for various time intervals of etching (1-10 h); this is done by determination of mass variation via etching time. The results indicate that the bulk etch rate VBincreases with the increase of etchant solution concentration and the temperature of solution. This can be attributed to the increase the thickness of the removed layers h of the detector.


Author(s):  
Hsien-Ming Hsiao ◽  
Chang-Liang Hu ◽  
Kuang-Li Chien ◽  
Wen-Chen Lee ◽  
Tsong-Yang Wei

In the Mo-99 (Molybdenum-99) isotope extraction test process for radiopharmaceutical applications, organic solvent is used to extract Mo-99 from an irradiated UO2 dissolution. The extraction solvent was stored when the test work was stopped. A total of about 120 liters of waste solvent was stored at INER (Institute of Nuclear Energy Research, Taiwan). The extraction solvent consisted of 5% di-(2-ethylhexyl)-phosphoric acid (D2EHPA) and kerosene. The radionuclides found in the waste solvent include Cs-137, Am-241, Tc-99, and Sr-90, which give off gross alpha and beta radioactivity of 1898 and 471 Bq/ml, respectively. This study aims to remove radionuclides from the waste solvent using sodium carbonate and sodium hydroxide solutions in different concentrations. After mixing the waste solvent with the alkaline solution followed by settling, a third phase other than organic and aqueous phase appeared which is expected due to the saponification reaction. The experimental results showed that increasing the number of washing and the alkaline solution concentration could enhance the radionuclides removal rate. An optimal removal method was proposed using 2M Na2CO3 solution twice followed by 1M NaOH solution one time for the third phase generated early in the mixing stages. The remaining gross alpha and beta radioactivity of the treated organic solvent was 2 and 3 Bq/ml, respectively. The treated solvent could be stabilized by ashing at 500°C and then immobilized. The alkaline solution would be neutralized by hydrochloric or nitric acid and then treated using a variety of adsorbents or bone char via adsorption to remove nuclides to meet the wastewater discharge limitation.


2020 ◽  
Vol 10 (7) ◽  
pp. 2203 ◽  
Author(s):  
Angela D’Elia ◽  
Daniela Pinto ◽  
Giacomo Eramo ◽  
Rocco Laviano ◽  
Angel Palomo ◽  
...  

The present study explores the effect of activating solution concentration (4, 6 and 8 M NaOH) on mechanically and thermally pre-treated carbonate-high illite clay (LCR). Pastes were prepared with an alkaline solution/clay (S/B) ratio of 0.55, which were cured at room temperature and relative humidity > 90% in a climatic chamber. At two and 28 days, compressive mechanical strength was determined, and the reaction products were characterised by X-ray Powder Diffraction analysis (XRPD), Fourier-transform infrared spectroscopy (FTIR) and Scanning Electron Microscopy - Energy Dispersive X-ray spectroscopy (SEM/EDX). Results obtained showed that the presence of reactive calcium in the starting clay induces co-precipitation of a mix of gels: An aluminium-enriched C-S-H gel (C-A-S-H) and a N-A-S-H gel, in which sodium is partially replaced by calcium (N,C)-A-S-H. Pastes prepared with higher (6 or 8 M) activator concentrations exhibit a more compact matrix than the ones prepared with 4 M NaOH. The findings show that the use of a 6 M NaOH solution yields a binder with two days compressive strength >20 MPa and 28 days strength of over 30 MPa.


2020 ◽  
Vol 30 (7) ◽  
pp. 54-57
Author(s):  
Thi Xuan Chu

We have successfully fabricated an electrochemical sensor for non-enzymatic glucose measurement based on copper oxide (CuO) nanoplates. CuO nanoplates were synthesized by a facile hydrothermal method at 180 oC for 23 h without using any surfactants. Filed-emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) were used to characterize morphologies and crystal structures of synthesized CuO nanoplates. A mixture of CuO nanoplates and polytetrafluoroethylene with mass ratio 0.15:1 was compressed at 9800 kPa onto platinum (Pt) to form Pt/CuO disk and it has been used as a working electrode for glucose measurement following non-enzymatic approach. Glucose concentration was evaluated by cyclic voltammetry in 0.1M NaOH solution. This enzyme-free electrochemical method was able to detect glucose with a concentration as low as 0.1 mM. These results show that CuO nanoplates are a promising candidate for non-enzymatic glucose detection.


Sign in / Sign up

Export Citation Format

Share Document