scholarly journals RACK1 is required for adipogenesis

2016 ◽  
Vol 311 (5) ◽  
pp. C831-C836 ◽  
Author(s):  
Qinghua Kong ◽  
Lan Gao ◽  
Yanfen Niu ◽  
Pianchou Gongpan ◽  
Yuhui Xu ◽  
...  

Adipose tissue plays a critical role in metabolic diseases and the maintenance of energy homeostasis. RACK1 has been identified as an adaptor protein involved in multiple intracellular signal transduction pathways and diseases. However, whether it regulates adipogenesis remains unknown. Here, we reported that RACK1 is expressed in 3T3-L1 cells and murine white adipose tissue and that RACK1 knockdown by shRNA profoundly suppressed adipogenesis by reducing the expression of PPAR-γ and C/EBP-β. Depletion of RACK1 increased β-catenin protein levels and activated Wnt signaling. Furthermore, RACK1 knockdown also suppressed the PI3K-Akt-mTOR-S6K signaling pathway by reducing the PI3K p85α, pAkt T473, and S6K p70. Taken together, these results demonstrate that RACK1 is a novel factor required for adipocyte differentiation by emerging Wnt/β-catenin signaling and PI3K-Akt-mTOR-S6K signaling pathway(s).

1998 ◽  
Vol 78 (3) ◽  
pp. 783-809 ◽  
Author(s):  
FRANCINE M. GREGOIRE ◽  
CYNTHIA M. SMAS ◽  
HEI SOOK SUL

Gregoire, Francine M., Cynthia M. Smas, and Hei Sook Sul. Understanding Adipocyte Differentiation. Physiol. Rev. 78: 783–809, 1998. — The adipocyte plays a critical role in energy balance. Adipose tissue growth involves an increase in adipocyte size and the formation of new adipocytes from precursor cells. For the last 20 years, the cellular and molecular mechanisms of adipocyte differentiation have been extensively studied using preadipocyte culture systems. Committed preadipocytes undergo growth arrest and subsequent terminal differentiation into adipocytes. This is accompanied by a dramatic increase in expression of adipocyte genes including adipocyte fatty acid binding protein and lipid-metabolizing enzymes. Characterization of regulatory regions of adipose-specific genes has led to the identification of the transcription factors peroxisome proliferator-activated receptor-γ (PPAR-γ) and CCAAT/enhancer binding protein (C/EBP), which play a key role in the complex transcriptional cascade during adipocyte differentiation. Growth and differentiation of preadipocytes is controlled by communication between individual cells or between cells and the extracellular environment. Various hormones and growth factors that affect adipocyte differentiation in a positive or negative manner have been identified. In addition, components involved in cell-cell or cell-matrix interactions such as preadipocyte factor-1 and extracellular matrix proteins are also pivotal in regulating the differentiation process. Identification of these molecules has yielded clues to the biochemical pathways that ultimately result in transcriptional activation via PPAR-γ and C/EBP. Studies on the regulation of the these transcription factors and the mode of action of various agents that influence adipocyte differentiation will reveal the physiological and pathophysiological mechanisms underlying adipose tissue development.


2009 ◽  
Vol 20 (3) ◽  
pp. 801-808 ◽  
Author(s):  
Fei Wang ◽  
Qiang Tong

Sirtuin family of proteins possesses NAD-dependent deacetylase and ADP ribosyltransferase activities. They are found to respond to nutrient deprivation and profoundly regulate metabolic functions. We have previously reported that caloric restriction increases the expression of one of the seven mammalian sirtuins, SIRT2, in tissues such as white adipose tissue. Because adipose tissue is a key metabolic organ playing a critical role in whole body energy homeostasis, we went on to explore the function of SIRT2 in adipose tissue. We found short-term food deprivation for 24 h, already induces SIRT2 expression in white and brown adipose tissues. Additionally, cold exposure elevates SIRT2 expression in brown adipose tissue but not in white adipose tissue. Intraperitoneal injection of a β-adrenergic agonist (isoproterenol) enhances SIRT2 expression in white adipose tissue. Retroviral expression of SIRT2 in 3T3-L1 adipocytes promotes lipolysis. SIRT2 inhibits 3T3-L1 adipocyte differentiation in low-glucose (1 g/l) or low-insulin (100 nM) condition. Mechanistically, SIRT2 suppresses adipogenesis by deacetylating FOXO1 to promote FOXO1's binding to PPARγ and subsequent repression on PPARγ transcriptional activity. Overall, our results indicate that SIRT2 responds to nutrient deprivation and energy expenditure to maintain energy homeostasis by promoting lipolysis and inhibiting adipocyte differentiation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Rosa Isela Ortiz-Huidobro ◽  
Myrian Velasco ◽  
Carlos Larqué ◽  
Rene Escalona ◽  
Marcia Hiriart

The increment in energy-dense food and low physical activity has contributed to the current obesity pandemic, which is more prevalent in women than in men. Insulin is an anabolic hormone that regulates the metabolism of lipids, carbohydrates, and proteins in adipose tissue, liver, and skeletal muscle. During obesity, nutrient storage capacity is dysregulated due to a reduced insulin action on its target organs, producing insulin resistance, an early marker of metabolic dysfunction. Insulin resistance in adipose tissue is central in metabolic diseases due to the critical role that this tissue plays in energy homeostasis. We focused on sexual dimorphism on the molecular mechanisms of insulin actions and their relationship with the physiology and pathophysiology of adipose tissue. Until recently, most of the physiological and pharmacological studies were done in males without considering sexual dimorphism, which is relevant. There is ample clinical and epidemiological evidence of its contribution to the establishment and progression of metabolic diseases. Sexual dimorphism is a critical and often overlooked factor that should be considered in design of sex-targeted therapeutic strategies and public health policies to address obesity and diabetes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Haiyan Zhou ◽  
Xinyi Peng ◽  
Jie Hu ◽  
Liwen Wang ◽  
Hairong Luo ◽  
...  

AbstractAdipose tissue-resident T cells have been recognized as a critical regulator of thermogenesis and energy expenditure, yet the underlying mechanisms remain unclear. Here, we show that high-fat diet (HFD) feeding greatly suppresses the expression of disulfide-bond A oxidoreductase-like protein (DsbA-L), a mitochondria-localized chaperone protein, in adipose-resident T cells, which correlates with reduced T cell mitochondrial function. T cell-specific knockout of DsbA-L enhances diet-induced thermogenesis in brown adipose tissue (BAT) and protects mice from HFD-induced obesity, hepatosteatosis, and insulin resistance. Mechanistically, DsbA-L deficiency in T cells reduces IFN-γ production and activates protein kinase A by reducing phosphodiesterase-4D expression, leading to increased BAT thermogenesis. Taken together, our study uncovers a mechanism by which T cells communicate with brown adipocytes to regulate BAT thermogenesis and whole-body energy homeostasis. Our findings highlight a therapeutic potential of targeting T cells for the treatment of over nutrition-induced obesity and its associated metabolic diseases.


2020 ◽  
Vol 295 (49) ◽  
pp. 16826-16839
Author(s):  
Haifeng Zhang ◽  
Xiaozhi Rong ◽  
Caixia Wang ◽  
Yunzhang Liu ◽  
Ling Lu ◽  
...  

The Wnt/β-catenin pathway is one of the major pathways that regulates embryonic development, adult homeostasis, and stem cell self-renewal. In this pathway, transcription factors T-cell factor and lymphoid enhancer factor (TCF/LEF) serve as a key switch to repress or activate Wnt target gene transcription by recruiting repressor molecules or interacting with the β-catenin effector, respectively. It has become evident that the protein stability of the TCF/LEF family members may play a critical role in controlling the activity of the Wnt/β-catenin signaling pathway. However, factors that regulate the stability of TCF/LEFs remain largely unknown. Here, we report that pVHL binding protein 1 (VBP1) regulates the Wnt/β-catenin signaling pathway by controlling the stability of TCF/LEFs. Surprisingly, we found that either overexpression or knockdown of VBP1 decreased Wnt/β-catenin signaling activity in both cultured cells and zebrafish embryos. Mechanistically, VBP1 directly binds to all four TCF/LEF family members and von Hippel-Lindau tumor-suppressor protein (pVHL). Either overexpression or knockdown of VBP1 increases the association between TCF/LEFs and pVHL and then decreases the protein levels of TCF/LEFs via proteasomal degradation. Together, our results provide mechanistic insights into the roles of VBP1 in controlling TCF/LEFs protein stability and regulating Wnt/β-catenin signaling pathway activity.


2001 ◽  
Vol 280 (4) ◽  
pp. C954-C961 ◽  
Author(s):  
Randall L. Mynatt ◽  
Jacqueline M. Stephens

Agouti is a secreted paracrine factor that regulates pigmentation in hair follicle melanocytes. Several dominant mutations cause ectopic expression of agouti, resulting in a phenotype characterized by yellow fur, adult-onset obesity and diabetes, increased linear growth and skeletal mass, and increased susceptibility to tumors. Humans also produce agouti protein, but the highest levels of agouti in humans are found in adipose tissue. To mimic the human agoutiexpression pattern in mice, transgenic mice (aP2-agouti) that express agouti in adipose tissue were generated. The transgenic mice develop a mild form of obesity, and they are sensitized to the action of insulin. We correlated the levels of specific regulators of insulin signaling and adipocyte differentiation with these phenotypic changes in adipose tissue. Signal transducers and activators of transcription (STAT)1, STAT3, and peroxisome proliferator-activated receptor (PPAR)-γ protein levels were elevated in the transgenic mice. Treatment of mature 3T3-L1 adipocytes recapitulated these effects. These data demonstrate that agouti has potent effects on adipose tissue. We hypothesize that agouti increases adiposity and promotes insulin sensitivity by acting directly on adipocytes via PPAR-γ.


2011 ◽  
Vol 300 (5) ◽  
pp. E877-E885 ◽  
Author(s):  
Qing He ◽  
Zhanguo Gao ◽  
Jun Yin ◽  
Jin Zhang ◽  
Zhong Yun ◽  
...  

The transcription factor HIF-1α activity is increased in adipose tissue to contribute to chronic inflammation in obesity. However, its upstream and downstream events remain to be characterized in adipose tissue in obesity. We addressed this issue by investigating adipocyte HIF-1α activity in response to obesity-associated factors, such as adipogenesis, insulin, and hypoxia. In adipose tissue, both HIF-1α mRNA and protein were increased by obesity. The underlying mechanism was investigated in 3T3-L1 adipocytes. HIF-1α mRNA and protein were augmented by adipocyte differentiation. In differentiated adipocytes, insulin further enhanced HIF-1α in both levels. Hypoxia enhanced only HIF-1α protein, not mRNA. PI3K and mTOR activities are required for the HIF-1α expression. Function of HIF-1α protein was investigated in the regulation of VEGF gene transcription. ChIP assay shows that HIF-1α binds to the proximal hypoxia response element in the VEGF gene promoter, and its function is inhibited by a corepressor composed of HDAC3 and SMRT. These observations suggest that of the three obesity-associated factors, all of them are able to augment HIF-1α protein levels, but only two (adipogenesis and insulin) are able to enhance HIF-1α mRNA activity. Adipose tissue HIF-1α activity is influenced by multiple signals, including adipogenesis, insulin, and hypoxia in obesity. The transcriptional activity of HIF-1α is inhibited by HDAC3-SMRT corepressor in the VEGF gene promoter.


2012 ◽  
Vol 26 (10) ◽  
pp. 1773-1782 ◽  
Author(s):  
Li Du ◽  
Anthony P. Heaney

Abstract Adipose tissue is an important metabolic organ that is crucial for whole-body insulin sensitivity and energy homeostasis. Highly refined fructose intake increases visceral adiposity although the mechanism(s) remain unclear. Differentiation of preadipocytes to mature adipocytes is a highly regulated process that is associated with characteristic sequential changes in adipocyte gene expression. We demonstrate that fructose treatment of murine 3T3-L1 cells incubated in standard differentiation medium increases adipogenesis and adipocyte-related gene expression. We further show that the key fructose transporter, GluT5, is expressed in early-stage adipocyte differentiation but is not expressed in mature adipocytes. GluT5 overexpression or knockdown increased and decreased adipocyte differentiation, respectively, and treatment of 3T3-L1 cells with a specific GluT5 inhibitor decreased adipocyte differentiation. Epidymal white adipose tissue was reduced in GluT5−/− mice compared with wild-type mice, and mouse embryonic fibroblasts derived from GluT5−/− mice exhibited impaired adipocyte differentiation. Taken together, these results demonstrate that fructose and GluT5 play an important role in regulating adipose differentiation.


2021 ◽  
Vol 11 (9) ◽  
pp. 906
Author(s):  
Chia-Lung Tsai ◽  
Chiao-Yun Lin ◽  
Angel Chao ◽  
Yun-Shien Lee ◽  
Ren-Chin Wu ◽  
...  

Estrogens can elicit rapid cellular responses via the G-protein-coupled receptor 30 (GPR30), followed by estrogen receptor α (ERα/ESR1)-mediated genomic effects. Here, we investigated whether rapid estrogen signaling via GRP30 may affect ESR1 expression, and we examined the underlying molecular mechanisms. The exposure of human endometrial cancer cells to 17β-estradiol promoted p62 phosphorylation and increased ESR1 protein expression. However, both a GPR30 antagonist and GPR30 silencing abrogated this phenomenon. GPR30 activation by 17β-estradiol elicited the SRC/EGFR/PI3K/Akt/mTOR signaling pathway. Intriguingly, unphosphorylated p62 and ESR1 were found to form an intracellular complex with the substrate adaptor protein KEAP1. Upon phosphorylation, p62 promoted ESR1 release from the complex, to increase its protein expression. Given the critical role played by p62 in autophagy, we also examined how this process affected ESR1 expression. The activation of autophagy by everolimus decreased ESR1 by promoting p62 degradation, whereas autophagy inhibition with chloroquine increased ESR1 expression. The treatment of female C57BL/6 mice with the autophagy inhibitor hydroxychloroquine—which promotes p62 expression—increased both phosphorylated p62 and ESR1 expression in uterine epithelial cells. Collectively, our results indicate that 17β-estradiol-mediated GPR30 activation elicits the SRC/EGFR/PI3K/Akt/mTOR signaling pathway and promotes p62 phosphorylation. In turn, phosphorylated p62 increased ESR1 expression by inducing its release from complexes that included KEAP1. Our findings may lead to novel pharmacological strategies aimed at decreasing ESR1 expression in estrogen-sensitive cells.


2018 ◽  
Vol 40 (01) ◽  
pp. 57-61 ◽  
Author(s):  
Haitang Wang ◽  
J.- Lee ◽  
Ye Tian

AbstractExercise is recognized as an effective method to prevent obesity and alleviate metabolic diseases. Browning of white adipose has the advantage of decreasing insulin resistance. We aim to identify critical differentially expressed genes (DEGs) in white adipose tissue after exercise. We downloaded the gene dataset GSE68161 of C57BL/6 mice from the Gene Expression Omnibus (GEO) database. Then, we analyzed the effect of exercise on up-regulated and down-regulated DEGs by GEO2R and performed protein-protein interaction network analyses. We then identified hub-genes in white adipose tissue and crosstalk genes of a single pathway by the STRING database and Cytoscape. In this study, 72 DEGs were screened out, and they mainly function in glycerol-3-phosphate dehydrogenase activity and in the primary biological process of fatty acid oxidation regulation. The top 5 hub-genes screened out were SLC27A1, COX7A1, PPARGC1A, FABP3, and UCP1. The 3 crosstalk genes found were SLC27A1, SLC27A2, and PPARA. These 3 genes might function as a bridge of the PPAR signaling pathway, adipocytokine signaling pathway and the insulin resistance pathway. SLC27A1 is critical gene for the interactions of signaling pathways in subcutaneous white adipose tissue. Therefore, further relationships between the browning of white adipose and insulin resistance need to be studied.


Sign in / Sign up

Export Citation Format

Share Document