Understanding Adipocyte Differentiation

1998 ◽  
Vol 78 (3) ◽  
pp. 783-809 ◽  
Author(s):  
FRANCINE M. GREGOIRE ◽  
CYNTHIA M. SMAS ◽  
HEI SOOK SUL

Gregoire, Francine M., Cynthia M. Smas, and Hei Sook Sul. Understanding Adipocyte Differentiation. Physiol. Rev. 78: 783–809, 1998. — The adipocyte plays a critical role in energy balance. Adipose tissue growth involves an increase in adipocyte size and the formation of new adipocytes from precursor cells. For the last 20 years, the cellular and molecular mechanisms of adipocyte differentiation have been extensively studied using preadipocyte culture systems. Committed preadipocytes undergo growth arrest and subsequent terminal differentiation into adipocytes. This is accompanied by a dramatic increase in expression of adipocyte genes including adipocyte fatty acid binding protein and lipid-metabolizing enzymes. Characterization of regulatory regions of adipose-specific genes has led to the identification of the transcription factors peroxisome proliferator-activated receptor-γ (PPAR-γ) and CCAAT/enhancer binding protein (C/EBP), which play a key role in the complex transcriptional cascade during adipocyte differentiation. Growth and differentiation of preadipocytes is controlled by communication between individual cells or between cells and the extracellular environment. Various hormones and growth factors that affect adipocyte differentiation in a positive or negative manner have been identified. In addition, components involved in cell-cell or cell-matrix interactions such as preadipocyte factor-1 and extracellular matrix proteins are also pivotal in regulating the differentiation process. Identification of these molecules has yielded clues to the biochemical pathways that ultimately result in transcriptional activation via PPAR-γ and C/EBP. Studies on the regulation of the these transcription factors and the mode of action of various agents that influence adipocyte differentiation will reveal the physiological and pathophysiological mechanisms underlying adipose tissue development.

2018 ◽  
Vol 38 (6) ◽  
Author(s):  
Jieyun Hong ◽  
Shijun Li ◽  
Xiaoyu Wang ◽  
Chugang Mei ◽  
Linsen Zan

Sirtuins, NAD+-dependent deacylases and ADP-ribosyltransferases, are critical regulators of metabolism involved in many biological processes, and are involved in mediating adaptive responses to the cellular environment. SIRT4 is a mitochondrial sirtuin and has been shown to play a critical role in maintaining insulin secretion and glucose homeostasis. As a regulator of lipid homeostasis, SIRT4 can repress fatty acid oxidation and promote lipid anabolism in nutrient-replete conditions. Using real-time quantitative PCR (qPCR) to explore the molecular mechanisms of transcriptional regulation of bovine SIRT4 during adipocyte differentiation, we found that bovine SIRT4 is expressed at high levels in bovine subcutaneous adipose tissue. SIRT4 knockdown led to decreased expression of adipogenic differentiation marker genes during adipocyte differentiation. The core promoter of bovine SIRT4 was identified in the −402/−60 bp region of the cloned 2-kb fragment containing the 5′-regulatory region. Binding sites were identified in this region for E2F transcription factor-1 (E2F1), CCAAT/enhancer-binding protein β (CEBPβ), homeobox A5 (HOXA5), interferon regulatory factor 4 (IRF4), paired box 4 (PAX4), and cAMP responsive element-binding protein 1 (CREB1) by using Electrophoretic mobility shift assay (EMSA) and luciferase reporter gene assay. We also found that E2F1, CEBPβ, and HOXA5 transcriptionally activate SIRT4 expression, whereas, IRF4, PAX4, and CREB1 transcriptionally repress SIRT4 expression. We further verified that SIRT4 knockdown could affect the ability of these transcription factors (TFs) to regulate the differentiation of bovine adipocytes. In conclusion, our results shed light on the mechanisms underlying the transcriptional regulation of SIRT4 expression in bovine adipocytes.


2020 ◽  
Author(s):  
Hang-Hee Cho ◽  
Soo-Jung Lee ◽  
Sung-Ho Kim ◽  
Sun-Hee Jang ◽  
Chungkil Won ◽  
...  

Abstract Background: The aim of this study was to investigate the effect of Acer tegmentosum Maxim (ATM) on adipocyte differentiation in 3T3-L1 adipocyte-derived cells and anti-obesity properties in high fat diet (HFD)-induced obese rats. Methods: 3T3-L1 adipocytes and HFD-induced obese rats were treated with ATM, and its effect on gene expression was analyzed using RT-PCR and Western blotting experiments. Results: Cellular lipid contents in DMI (dexamethasone, 3-isobutyl-1-methylxanthine, and insulin mixture)-treated cells increased, while ATM treatment caused a significant reduction in lipid accumulation in differentiated 3T3-L1 cells. ATM caused inhibition of adipogenesis via down-regulation of the CCAAT/enhancer binding protein β (C/EBPβ), C/EBPα, and peroxisome proliferator-activated receptor γ (PPARγ) expressions in 3T3-L1 cells. Moreover, treatment with ATM caused a decrease in the expressions of adipocyte-specific genes, such as adipocyte fatty acid-binding protein-2 (aP2), fatty acid synthase (FAS), and lipoprotein lipase (LPL), compared with DMI-stimulated adipocytes. In addition, phosphorylation levels of protein kinase B (Akt) and its downstream substrate, glycogen synthase kinase 3β (GSK3β), were significantly decreased by ATM treatment of 3T3-L1 adipocytes. Together, these results indicated that ATM caused inhibition of both adipocyte differentiation via suppression of the C/EBP family and PPARγ expressions and the Akt signaling pathway in 3T3-L1 adipocytes. In the present study, we further investigated anti-obesity effects of ATM on HFD-induced obese rats. Rats fed with HFD demonstrated elevations in body weight gain, while the administration of ATM significantly reversed BW gains and adipose tissue weights in rats fed HFD. ATM supplementation also caused a decrease in the circulating triglyceride levels and total cholesterol levels and led to inhibition of lipid accumulation in the adipose tissues in HFD-induced obesity in rats. Furthermore, epididymal fat exhibited larger adipocytes in the HFD group, whereas the ATM-treated group was significantly smaller than that of HFD group. These results strongly demonstrate that ATM administration caused a reduction in adiposity via attenuation in adipose tissue mass and adipocyte size. Conclusion: These finding demonstrated that ATM exerted anti-obesity effects through inhibition of adipocyte differentiation and adipogenesis, leading to a decrease in BW and fat tissue mass in HFD-induced obesity in rats.


2016 ◽  
Vol 311 (5) ◽  
pp. C831-C836 ◽  
Author(s):  
Qinghua Kong ◽  
Lan Gao ◽  
Yanfen Niu ◽  
Pianchou Gongpan ◽  
Yuhui Xu ◽  
...  

Adipose tissue plays a critical role in metabolic diseases and the maintenance of energy homeostasis. RACK1 has been identified as an adaptor protein involved in multiple intracellular signal transduction pathways and diseases. However, whether it regulates adipogenesis remains unknown. Here, we reported that RACK1 is expressed in 3T3-L1 cells and murine white adipose tissue and that RACK1 knockdown by shRNA profoundly suppressed adipogenesis by reducing the expression of PPAR-γ and C/EBP-β. Depletion of RACK1 increased β-catenin protein levels and activated Wnt signaling. Furthermore, RACK1 knockdown also suppressed the PI3K-Akt-mTOR-S6K signaling pathway by reducing the PI3K p85α, pAkt T473, and S6K p70. Taken together, these results demonstrate that RACK1 is a novel factor required for adipocyte differentiation by emerging Wnt/β-catenin signaling and PI3K-Akt-mTOR-S6K signaling pathway(s).


Endocrinology ◽  
2009 ◽  
Vol 150 (12) ◽  
pp. 5373-5383 ◽  
Author(s):  
Gabriele Tiller ◽  
Pamela Fischer-Posovszky ◽  
Helmut Laumen ◽  
Andreas Finck ◽  
Thomas Skurk ◽  
...  

Abstract Expansion of adipose tissue mass by hypertrophy and hyperplasia is the hallmark of obesity. An automated cDNA screen was established to identify secreted human proteins with an inhibitory effect on adipocyte differentiation and, thereby, a potential inhibitory effect on adipose tissue growth. A member of the TNF superfamily, TNF-like weak inducer of apoptosis (TWEAK; TNF superfamily 12) was identified by means of high-throughput screening with the lipophilic dye Nile Red as an inhibitor of murine adipocyte differentiation and, subsequently, also of human adipocyte differentiation. TWEAK inhibited lipid deposition in a dose-dependent manner without causing cytotoxic effects. This inhibitory action was mimicked by an agonistic antibody of the TWEAK receptor. The TWEAK receptor (fibroblast growth factor inducible 14; CD266) was expressed on human primary preadipocytes and mature adipocytes. Knockdown of TWEAK receptor by short-hairpin RNA abolished the inhibitory effect of TWEAK on cell differentiation, demonstrating that the effects of TWEAK are mediated by its specific receptor. Inhibition of differentiation was the result of interference at an early step of transcriptional activation as assessed by decreased peroxisome proliferator-activated receptor-γ, CCAAT enhancer-binding protein α (C/EBPα), and CCAAT enhancer-binding protein β (C/EBPβ) mRNA expression. In contrast to TNFα, basal and insulin-stimulated glucose uptake and lipolysis of terminally differentiated mature adipocytes and secretion of proinflammatory cytokines were not altered in the presence of TWEAK, and nuclear factor κ B activity was only weakly induced. We conclude from our findings that TWEAK and the corresponding agonistic antibody have the potential to prevent adipose tissue growth without adversely influencing central metabolic pathways or proinflammatory cytokine secretion in adipose tissue.


2006 ◽  
Vol 400 (3) ◽  
pp. 439-448 ◽  
Author(s):  
Songyan Han ◽  
Jun Lu ◽  
Yu Zhang ◽  
Cao Cheng ◽  
Liping Han ◽  
...  

The critical role of IL-5 (interleukin-5) in eosinophilic inflammation implicates it as a therapeutic target for allergic diseases. The aim of the present study was to elucidate the molecular basis for the involvement of reversible histone acetylation in IL-5 transcriptional regulation. We provide evidence that HDAC4 (histone deacetylase 4) and p300, a known HAT (histone acetyltransferase), reversibly controlled the activity of the IL-5 promoter in vivo and in vitro, with a concurrent alteration of histone H3 acetylation status at the promoter regions. The nucleo-cytoplasmic shuttling of HDAC4 was shown to play an important role in the suppressive function of HDAC4 in IL-5 gene expression. Point mutation and reporter ChIP (chromatin immunoprecipitation) studies determined that the four transcription factors binding on the IL-5 promoter, i.e. C/EBPβ (CAAT/enhancer-binding protein β), GATA3 (GATA binding protein 3), NFAT (nuclear factor of activated T cells) and YY1 (Yin and Yang 1), were essential for the recruitment of HDAC4. Consistent with these observations, HDAC4 was found to form protein complexes with GATA3 and YY1, and to co-exist in the nuclei with GATA3. We propose that the unique regulatory mechanism of IL-5 gene transcription involves the reversible histone modification catalysed by HDAC4 and p300, which are recruited by the transcription factors. The dynamic balance in IL-5 transcriptional regulation is achieved through interactions among HATs/HDACs, histones and transcription factors. These data contribute to understanding the molecular mechanisms of IL-5 regulation, which is crucial to the development of new therapeutic strategies for IL-5-related allergic diseases.


2017 ◽  
Vol 68 (7) ◽  
pp. 1481-1484 ◽  
Author(s):  
Radu Mihail Mirica ◽  
Mihai Ionescu ◽  
Alexandra Mirica ◽  
Octav Ginghina ◽  
Razvan Iosifescu ◽  
...  

Obesity involves the growth of adipose tissue cells (adipocytes and preadipocytes), as well as microvascular endothelial cells. Matrix metalloproteinases (MMPs) are relevant ezymes for the modulation of extracellular matrix (ECM) and adipocyte and preadipocytes differentiation. They are elevated in obese patients, generating abnormal ECM metabolism.[1]. This article proposes a thorough study of literature with focus on the important roles of matrix metalloproteinases in the pathophysiology of obesity. The article represents a narrative review based on an English-language PubMed research of the medical literature regardind important aspects of the proposed aim. MMP-2 activity was signi�cantly higher than MMP-9, both activities were detectable. MMP-9 was strongly correlated with body weight parameters before surgery, as well as after significant body weight reduction as a result of bariatric surgery. Concerning MMP-2 and MMP-9 they are also involved in the turnover of basement membranes both those of adipose tissue and endothelial. MMP-9 levels were moderately correlated with HDL cholesterol levels. Taken together, the present data suggest that changes in ECM through MMP-mediated degradation might play a critical role in the adipocyte differentiation process. These findings are detected both in clinical trials and in laboratory animal experiments. It is then tempting to speculate that the adipocyte-derived MMPs might represent a new pharmacological target for the inhibition of adipose tissue growth by inhibiting adipose differentiation as well as angiogenic process.


Biomedicines ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 76 ◽  
Author(s):  
Suresh P. Khadke ◽  
Aniket A. Kuvalekar ◽  
Abhay M. Harsulkar ◽  
Nitin Mantri

Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by impaired insulin action and its secretion. The objectives of the present study were to establish an economical and efficient animal model, mimicking pathophysiology of human T2DM to understand probable molecular mechanisms in context with lipid metabolism. In the present study, male Wistar rats were randomly divided into three groups. Animals were fed with high fat diet (HFD) except healthy control (HC) for 12 weeks. After eight weeks, intra peritoneal glucose tolerance test was performed. After confirmation of glucose intolerance, diabetic control (DC) group was injected with streptozotocin (STZ) (35 mg/kg b.w., i.p.). HFD fed rats showed increase (p ≤ 0.001) in glucose tolerance and HOMA-IR as compared to HC. Diabetes rats showed abnormal (p ≤ 0.001) lipid profile as compared to HC. The hepatocyte expression of transcription factors SREBP-1c and NFκβ, and their target genes were found to be upregulated, while PPAR-γ, CPT1A and FABP expressions were downregulated as compared to the HC. A number of animal models have been raised for studying T2DM, but the study has been restricted to only the biochemical level. The model is validated at biochemical, molecular and histopathological levels, which can be used for screening new therapeutics for the effective management of T2DM.


1989 ◽  
Vol 9 (12) ◽  
pp. 5331-5339 ◽  
Author(s):  
R Herrera ◽  
H S Ro ◽  
G S Robinson ◽  
K G Xanthopoulos ◽  
B M Spiegelman

Adipocyte differentiation is accompanied by the transcriptional activation of many new genes, including the gene encoding adipocyte P2 (aP2), an intracellular lipid-binding protein. Using specific deletions and point mutations, we have shown that at least two distinct sequence elements in the aP2 promoter contribute to the expression of the chloramphenicol acetyltransferase gene in chimeric constructions transfected into adipose cells. An AP-I site at -120, shown earlier to bind Jun- and Fos-like proteins, serves as a positive regulator of chloramphenicol acetyltransferase gene expression in adipocytes but is specifically silenced by adjacent upstream sequences in preadipocytes. Sequences upstream of the AP-I site at -140 (termed AE-1) can function as an enhancer in both cell types when linked to a viral promoter but can stimulate expression only in fat cells in the intact aP2 promoter. The AE-1 sequence binds an adipocyte protein identical or very closely related to an enhancer-binding protein (C/EBP) that has been previously implicated in the regulation of several liver-specific genes. A functional role for C/EBP in the regulation of the aP2 gene is indicated by the facts that C/EBP mRNA is induced during adipocyte differentiation and the aP2 promoter is transactivated by cotransfection of a C/EBP expression vector into preadipose cells. These results indicate that sequences that bind C/EBP and the Fos-Jun complex play major roles in the expression of the aP2 gene during adipocyte differentiation and demonstrate that C/EBP can directly regulate cellular gene expression.


Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Balyssa B Bell ◽  
Donald A Morgan ◽  
Kamal Rahmouni

The adipocyte-derived hormone leptin plays a critical role in the regulation of energy homeostasis through its action in the brain to decrease food intake and promote energy expenditure by increasing sympathetic nerve activity (SNA) to the thermogenic brown adipose tissue (BAT). Leptin also increases SNA to cardiovascular organs including the kidney and raises arterial pressure. However, it is unclear whether leptin controls regional SNA via conserved or distinct molecular mechanisms. Multiple intracellular pathways have been associated with leptin signaling including the mechanistic target of rapamycin complex 1 (mTORC1), which has been proposed as a critical determinant of leptin action. Here, we assessed the contribution of mTORC1 signaling to leptin-evoked regional sympathetic activation. Simultaneous multifiber recording of renal and BAT SNA in anesthetized C57BL/6J mice showed that intracerebroventricular (ICV) administration of leptin (2μg, n=5) increased both renal (170±34%) and BAT (208±37%) SNA. Interestingly, ICV pre-treatment with the mTORC1 inhibitor (rapamycin, 5ng, n=6) abolished the leptin-induced increase in renal (10±6%, P<0.05 vs controls) but not BAT (226±31%) SNA. Next, we used conditional knockout mice that lack the critical mTORC1 subunit, Raptor, specifically in leptin receptor (LRb)-expressing cells (LRb Cre /Raptor fl/fl ) to determine the long-term effects of disrupting mTORC1 signaling on leptin-evoked increase in regional SNA. We confirmed the inability of leptin to activate mTORC1 signaling in LRb-expressing cells of LRb Cre /Raptor fl/fl mice relative to controls using immunohistochemical staining of phosphorylated ribosomal S6, a downstream target of mTORC1. We observed a significant increase in renal SNA in response to ICV leptin in control mice (127±16%, n=9), but not in LRb Cre /Raptor fl/fl mice (-4±15%, n=9, P<0.05 vs controls). Conversely, ICV leptin-induced increase in BAT SNA was not different in LRb Cre /Raptor fl/fl mice (109±27%, n=5) vs. littermate controls (173±52%, n=4). Our data suggest a critical role for mTORC1 signaling in selectively mediating the cardiovascular sympathetic but not the thermogenic actions of leptin, with important implications for obesity-associated hypertension.


Sign in / Sign up

Export Citation Format

Share Document