Acylphosphatase and adenosinetriphosphatase of hibernating hamsters

1960 ◽  
Vol 199 (5) ◽  
pp. 950-954 ◽  
Author(s):  
L. C. Mokrasch

Acylphosphatase (AcOPase) and adenosinetriphosphatase (ATPase) in brain stem, cerebral cortex, cerebellum, hippocampal region and thalamic-hypothalamic region of the brain and in liver, heart and skeletal muscle of hibernating hamsters were compared with those in the corresponding parts of nonhibernating hamsters. The AcOPase of the brain zones of hibernators is more active than that of nonhibernators when measured at 0°C. Some brain parts show a greater difference than others. The brain parts of both groups are about twice as active in AcOPase as are the body parts and differences between the groups are less apparent when measurements are made at 38°. Differences between the two groups in ATPase are increased when the assays are made at 0° and in the presence of 3-phosphoglyceric acid, the hibernators having the more activity. It is concluded that ATPase is insufficient to maintain homeothermy near 0° and that AcOPase may provide the thermogenesis for both the low temperature homeothermy and for the early part of arousal. The alterations in the enzymes of hibernators appear to be adaptive changes consistent with the postulated role of acylphosphatase.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Martin L. Pall

Abstract Millimeter wave (MM-wave) electromagnetic fields (EMFs) are predicted to not produce penetrating effects in the body. The electric but not magnetic part of MM-EMFs are almost completely absorbed within the outer 1 mm of the body. Rodents are reported to have penetrating MM-wave impacts on the brain, the myocardium, liver, kidney and bone marrow. MM-waves produce electromagnetic sensitivity-like changes in rodent, frog and skate tissues. In humans, MM-waves have penetrating effects including impacts on the brain, producing EEG changes and other neurological/neuropsychiatric changes, increases in apparent electromagnetic hypersensitivity and produce changes on ulcers and cardiac activity. This review focuses on several issues required to understand penetrating effects of MM-waves and microwaves: 1. Electronically generated EMFs are coherent, producing much higher electrical and magnetic forces then do natural incoherent EMFs. 2. The fixed relationship between electrical and magnetic fields found in EMFs in a vacuum or highly permeable medium such as air, predicted by Maxwell’s equations, breaks down in other materials. Specifically, MM-wave electrical fields are almost completely absorbed in the outer 1 mm of the body due to the high dielectric constant of biological aqueous phases. However, the magnetic fields are very highly penetrating. 3. Time-varying magnetic fields have central roles in producing highly penetrating effects. The primary mechanism of EMF action is voltage-gated calcium channel (VGCC) activation with the EMFs acting via their forces on the voltage sensor, rather than by depolarization of the plasma membrane. Two distinct mechanisms, an indirect and a direct mechanism, are consistent with and predicted by the physics, to explain penetrating MM-wave VGCC activation via the voltage sensor. Time-varying coherent magnetic fields, as predicted by the Maxwell–Faraday version of Faraday’s law of induction, can put forces on ions dissolved in aqueous phases deep within the body, regenerating coherent electric fields which activate the VGCC voltage sensor. In addition, time-varying magnetic fields can directly put forces on the 20 charges in the VGCC voltage sensor. There are three very important findings here which are rarely recognized in the EMF scientific literature: coherence of electronically generated EMFs; the key role of time-varying magnetic fields in generating highly penetrating effects; the key role of both modulating and pure EMF pulses in greatly increasing very short term high level time-variation of magnetic and electric fields. It is probable that genuine safety guidelines must keep nanosecond timescale-variation of coherent electric and magnetic fields below some maximum level in order to produce genuine safety. These findings have important implications with regard to 5G radiation.


Perception ◽  
10.1068/p5853 ◽  
2007 ◽  
Vol 36 (10) ◽  
pp. 1547-1554 ◽  
Author(s):  
Francesco Pavani ◽  
Massimiliano Zampini

When a hand (either real or fake) is stimulated in synchrony with our own hand concealed from view, the felt position of our own hand can be biased toward the location of the seen hand. This intriguing phenomenon relies on the brain's ability to detect statistical correlations in the multisensory inputs (ie visual, tactile, and proprioceptive), but it is also modulated by the pre-existing representation of one's own body. Nonetheless, researchers appear to have accepted the assumption that the size of the seen hand does not matter for this illusion to occur. Here we used a real-time video image of the participant's own hand to elicit the illusion, but we varied the hand size in the video image so that the seen hand was either reduced, veridical, or enlarged in comparison to the participant's own hand. The results showed that visible-hand size modulated the illusion, which was present for veridical and enlarged images of the hand, but absent when the visible hand was reduced. These findings indicate that very specific aspects of our own body image (ie hand size) can constrain the multisensory modulation of the body schema highlighted by the fake-hand illusion paradigm. In addition, they suggest an asymmetric tendency to acknowledge enlarged (but not reduced) images of body parts within our body representation.


2011 ◽  
Vol 279 (1732) ◽  
pp. 1287-1292 ◽  
Author(s):  
Roi Holzman ◽  
David C. Collar ◽  
Samantha A. Price ◽  
C. Darrin Hulsey ◽  
Robert C. Thomson ◽  
...  

Morphological diversification does not proceed evenly across the organism. Some body parts tend to evolve at higher rates than others, and these rate biases are often attributed to sexual and natural selection or to genetic constraints. We hypothesized that variation in the rates of morphological evolution among body parts could also be related to the performance consequences of the functional systems that make up the body. Specifically, we tested the widely held expectation that the rate of evolution for a trait is negatively correlated with the strength of biomechanical trade-offs to which it is exposed. We quantified the magnitude of trade-offs acting on the morphological components of three feeding-related functional systems in four radiations of teleost fishes. After accounting for differences in the rates of morphological evolution between radiations, we found that traits that contribute more to performance trade-offs tend to evolve more rapidly, contrary to the prediction. While ecological and genetic factors are known to have strong effects on rates of phenotypic evolution, this study highlights the role of the biomechanical architecture of functional systems in biasing the rates and direction of trait evolution.


Body schema refers to the system of sensory-motor functions that enables control of the position of body parts in space, without conscious awareness of those parts. Body image refers to a conscious representation of the way the body appears—a set of conscious perceptions, affective attitudes, and beliefs pertaining to one’s own bodily image. In 2005, Shaun Gallagher published an influential book entitled ‘How the Body Shapes the Mind’. This book not only defined both body schema (BS) and body image (BI), but also explored the complicated relationship between the two. The book also established the idea that there is a double dissociation, whereby body schema and body image refer to two different, but closely related, systems. Given that many kinds of pathological cases can be described in terms of body schema and body image (phantom limbs, asomatognosia, apraxia, schizophrenia, anorexia, depersonalization, and body dysmorphic disorder, among others), we might expect to find a growing consensus about these concepts and the relevant neural activities connected to these systems. Instead, an examination of the scientific literature reveals continued ambiguity and disagreement. This volume brings together leading experts from the fields of philosophy, neuroscience, psychology, and psychiatry in a lively and productive dialogue. It explores fundamental questions about the relationship between body schema and body image, and addresses ongoing debates about the role of the brain and the role of social and cultural factors in our understanding of embodiment.


Author(s):  
Lingfeng Qin ◽  
Haifeng Zhang ◽  
Busu Li ◽  
Quan Jiang ◽  
Francesc Lopez ◽  
...  

Objective: Cerebral cavernous malformations (CCMs) can happen anywhere in the body, although they most commonly produce symptoms in the brain. The role of CCM genes in other vascular beds outside the brain and retina is not well-examined, although the 3 CCM-associated genes ( CCM1 , CCM2 , and CCM3 ) are ubiquitously expressed in all tissues. We aimed to determine the role of CCM gene in lymphatics. Approach and Results: Mice with an inducible pan–endothelial cell (EC) or lymphatic EC deletion of Ccm3 ( Pdcd10 ECKO or Pdcd10 LECKO ) exhibit dilated lymphatic capillaries and collecting vessels with abnormal valve structure. Morphological alterations were correlated with lymphatic dysfunction in Pdcd10 LECKO mice as determined by Evans blue dye and fluorescein isothiocyanate(FITC)-dextran transport assays. Pdcd10 LECKO lymphatics had increased VEGFR3 (vascular endothelial growth factor receptor-3)-ERK1/2 signaling with lymphatic hyperplasia. Mechanistic studies suggested that VEGFR3 is primarily regulated at a transcriptional level in Ccm3-deficient lymphatic ECs, in an NF-κB (nuclear factor κB)–dependent manner. CCM3 binds to importin alpha 2/KPNA2 (karyopherin subunit alpha 2), and a CCM3 deletion releases KPNA2 to activate NF-κB P65 by facilitating its nuclear translocation and P65-dependent VEGFR3 transcription. Moreover, increased VEGFR3 in lymphatic EC preferentially activates ERK1/2 signaling, which is critical for lymphatic EC proliferation. Importantly, inhibition of VEGFR3 or ERK1/2 rescued the lymphatic defects in structure and function. Conclusions: Our data demonstrate that CCM3 deletion augments the VEGFR3-ERK1/2 signaling in lymphatic EC that drives lymphatic hyperplasia and malformation and warrant further investigation on the potential clinical relevance of lymphatic dysfunction in patients with CCM.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 1372 ◽  
Author(s):  
Renae J. Stefanetti ◽  
Sarah Voisin ◽  
Aaron Russell ◽  
Séverine Lamon

The forkhead box O3 (FOXO3, or FKHRL1) protein is a member of the FOXO subclass of transcription factors. FOXO proteins were originally identified as regulators of insulin-related genes; however, they are now established regulators of genes involved in vital biological processes, including substrate metabolism, protein turnover, cell survival, and cell death. FOXO3 is one of the rare genes that have been consistently linked to longevity in in vivo models. This review provides an update of the most recent research pertaining to the role of FOXO3 in (i) the regulation of protein turnover in skeletal muscle, the largest protein pool of the body, and (ii) the genetic basis of longevity. Finally, it examines (iii) the role of microRNAs in the regulation of FOXO3 and its impact on the regulation of the cell cycle.


2004 ◽  
pp. 147-176
Author(s):  
Stanimir Rakic

In this paper I examine compound names of plants, animals, human beings and other things in which at least one nominal component designates a part of the body or clothes, or some basic elements of houshold in Serbian and English. The object of my analysis are complex derivatives of the type (adjective noun) + suffix in Serbian and componds of the type noun's + noun, noun + noun and adjective + noun in English. I try to show that there is a difference in metaphorical designation of human beings and other living creatures and things by such compound nouns. My thesis is that the metathorical designation of human beings by such compounds is based on the symbolic meaning of some words and expressions while the designation of other things and beings relies on noticed similarity. In Serbian language such designation is provided by comples derivatives praznoglavac 'empty-headed person', tupoglavac 'dullard' debolokoiac 'callos person', golobradac 'young, inexperienced person' zutokljunac 'tledling' (fig), in English chicken liver, beetle brain birdbrain, bonehead, butterfingers, bigwig, blackleg, blue blood bluestocking, eat's paw, deadhead,fat-guts,fathead, goldbrick (kol) hardhat, hardhead, greenhorn, redcoat (ist), redneck (sl), thickhead, etc. Polisemous compounds like eat's paw lend support for this thesis because their designation of human beings is based on symbolic meaning of some words or expressions. I hypothesize that the direction and extend of the possible metaphorization of names may be accounted for by the following hierarchy (11) people - animals - plants - meterial things. Such hierarchy is well supported by the observations of Lakoff (1987) and Taylor (1995) about the role of human body in early experience and perception ofthe reality. Different restrictions which may be imposed in the hierarchy (11) should be the matter of further study, some of which have been noted on this paper. The compounds of this type denoting people have metaphorically meaning conected with some pejorative uses. These compounds refer to some psychological or characteral features, and show that for the classification of people such features are much more important than physical properties. While the animals and plants are classified according to some charecteristics of their body parts, people are usually classified according to psychollogical characteristics or their social functions. I have also noted a difference in structure between compounds designation animals and those designating plants and other things. The designation of animals relies more on metonymy, and that of plants and other things on metaphor based on comparision of noticed similarities. In the compounds designating animals, the nominal component relatively seldom refers to the parts of plants or other things. I guess that the cause may be the fact that the anatomy of plants is very different from the anatomy of animals. As a consequence the structure adjective + noun is much more characteristic of the compounds designating animals in English than the structure noun's + noun, and the same holds, although in a lesser degree for the compounds designating humans. It is also noticeable that in English compounds whose second component a part of body or clothes the first component rarely designates animals. On the other hand the compounds (9), in which the nominal head refers to some superordinate species, the first component often designates animal species, but usually of a very different kind. These data seem to lend support for Goldvarg & Gluksberg's thesis (1998) that metaforical interpretation is favoured if the nominal constituents denote quite different entities.


Author(s):  
TGA Leonard

Ketones are an important fuel source for the body during periods of starvation and are readily used by the brain, the heart, and skeletal muscle. Ketones may also be produced in response to certain diets. Interest in the use of a diet high in fat and low in carbohydrates in order to induce a state of ketosis has increased in recent years. This review will cover the physiology of ketosis and examine the effects of the ketogenic diet.


2021 ◽  
Vol 10 (2) ◽  
pp. 29-43
Author(s):  
Rohit Rastogi ◽  
Mamta Saxena ◽  
Devendra K. Chaturvedi ◽  
Mayank Gupta ◽  
Akshit Rajan Rastogi ◽  
...  

Our entire body, including the brain and nervous system, works with the help of various kinds of biological stuff which includes positively charged ions of elements like sodium, potassium, and calcium. The different body parts have different energy levels, and by measuring the energy level, we can also measure the fitness of an individual. Moreover, this energy and fitness are directly related to mental health and the signals being transmitted between the brain and other parts of the body. Various activities like walking, talking, eating, and thinking are performed with the help of these transmission signals. Another critical role played by them is that it helps in examining the mechanisms of cells present at various places in the human body and signaling the nervous system and brain if they are properly functioning or not. This manuscript is divided into two parts where, in the first part, it provides the introduction, background, and extensive literature survey on Kirlian experiments to measure the human's organ energy.


2022 ◽  
pp. 65-85
Author(s):  
Mohammad Mudassir Ahmad ◽  
Kiran Ahuja

The electroencephalogram is used in brain-computer interface (BCI) in which signal from the human brain is sensed with the help of EEG and then sent to the computer to control the external device without having any touch of muscular body parts. On the other hand, the brain chip interfacing (BCHIs) is a microelectronic chip that has physical connections with the neurons for the transfer of information. The BCI needs a reliable, high-speed network and new security tool that can assist BCI technology. 5G network and blockchain technology is ideal to support the growing needs of brain chip interfacing. Further, the Cloudmind, which is an emerging application of BCI, can be conceptualized by using blockchain technology. In this chapter, brain-computer interfaces (BCIs) are expedient to bridge the connectivity chasm between human and machine (computer) systems via 5G technologies, which offers minimal latency, faster speeds, and stronger bandwidth connectivity with strong cryptographic qualities of blockchain technologies.


Sign in / Sign up

Export Citation Format

Share Document