Dynamic moduli of rabbit lung tissue and pigeon ligamentum propatagiale undergoing uniaxial cyclic loading

1994 ◽  
Vol 76 (2) ◽  
pp. 773-782 ◽  
Author(s):  
S. M. Mijailovich ◽  
D. Stamenovic ◽  
R. Brown ◽  
D. E. Leith ◽  
J. J. Fredberg

In fibrous connective tissue networks, mechanical loads may be transferred from one fiber to the next by friction between slipping fibers (J. Appl. Physiol. 74: 665–681, 1993). Here we tested that hypothesis; it predicts that elastance of fibrous networks increases with increasing frequency, decreases with increasing strain amplitude (delta epsilon), and decreases with tissue swelling by solvent. Similarly, it predicts that hysteresivity (eta) decreases with increasing frequency, increases with increasing delta epsilon, decreases with tissue swelling, and, importantly, exceeds that of isolated fibrous constituents of the matrix. Elastance and eta of two structurally dissimilar connective tissues were measured, the rabbit lung parenchymal strip (a loose collagenous tissue) and the pigeon ligamentum propatagiale (an elastin-rich tissue). Experiments covered the frequency range 0.03125-3.125 Hz. Elastance of lung parenchyma was substantially lower than that of propatagial ligament, increased linearly with the logarithm of frequency, and decreased with delta epsilon; that of ligamentum propatagiale was insensitive to both frequency and delta epsilon. eta of lung parenchyma decreased moderately with increasing frequency and assumed values of approximately 0.1, but eta of ligamentum propatagiale was frequency and delta epsilon invariant and assumed values an order of magnitude smaller. These tissues also showed disparate mechanical responses when exposed to hypertonic bath solutions. Although there were some quantitative differences between predictions and experimental observations, the dynamic behavior of lung parenchyma was generally consistent with that of a network in which load is transferred from one fiber to the next by the agency of friction acting at slipping interface surfaces.

1986 ◽  
Vol 61 (2) ◽  
pp. 701-705 ◽  
Author(s):  
R. T. Yen ◽  
Y. C. Fung ◽  
H. H. Ho ◽  
G. Butterman

The speed of stress waves in the lung parenchyma was investigated to understand why, among all internal organs, the lung is the most easily injured when an animal is subjected to an impact loading. The speed of the sound is much less in the lung than that in other organs. To analyze the dynamic response of the lung to impact loading, it is necessary to know the speed of internal wave propagation. Excised lungs of the rabbit and the goat were impacted with water jet at dynamic pressure in the range of 7–35 kPa (1–5 psi) and surface velocity of 1–15 m/s. The stress wave was measured by pressure transducer. The distance between the point of impact and the sensor at another point on the far side of the lung and the transit time of the stress wave were measured. The wave speed in the goat lung was found to vary from 31.4 to 64.7 m/s when the transpulmonary pressure Pa-Ppl was varied from 0 to 20 cmH2O where Pa represents airway pressure and Ppl represents pleural pressure. In rabbit lung the wave speed varied from 16.5 to 36.9 m/s when Pa-Ppl was varied from 0 to 16 cmH2O. Using measured values of the bulk modulus, shear modulus, and density of the parenchyma, reasonable agreement between theoretical and experimental wave speeds were obtained.


2001 ◽  
Vol 05 (02) ◽  
pp. 79-88
Author(s):  
K. Dobra ◽  
A. Hjerpe

Proteoglycans (PGs) are cell-membrane and extracellular matrix components with a wide variety of different functions. In the matrix, they are mainly of structural importance, although some of them have been ascribed specific regulatory functions, such as in the assembly of collagen fibers. PGs on the cell surface act as essential modulators of specific ligand-binding reactions, involving interactions between adjacent cells and between cells and surrounding matrix. Through these interactions they participate in different processes, including cell proliferation and differentiation. Qualitative and quantitative changes in PG expression can therefore be associated with various physiological and pathological conditions. We have optimized the conditions for semi-quantitative evaluation of proteoglycan expression by RT-PCR reaction, using glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as reference gene. The relative fluorescence of analyte to reference amplimers can — within certain limits — be used to estimate the amount of target RNA and allows direct comparison of multiple samples. The profile of PG expression obtained in this way can be used to extend our current understanding of the possible functions that can be associated with these complex molecules.


Author(s):  
И.М. Балаченков ◽  
Ю.В. Петров ◽  
В.К. Гусев ◽  
Н.Н. Бахарев ◽  
В.И. Варфоломеев ◽  
...  

In Globus-M2 ohmic discharges with low density, by means of Mirnov coils array, magnetic field oscillations with frequencies in 1 MHz range were detected. Frequency range of these oscillations significantly exceed the range of TAE and RSAE frequencies, which were previously observed on Globus-M and Globus-M2 tokamaks, and their amplitude, contrary, turned out to be up to an order of magnitude lower. It was found that high frequency oscillations are interrelated with suprathermal electron fraction. At the same time the observed instability seems to have Alfvenic nature, since its frequency correlates well with Alfven frequency scaling. It was also found that magnetic perturbation always forms standing wave with predominantly low toroidal wavenumbers, including n = 0 structure, which makes gap (e.g. TAE) mode excitation impossible. Frequency chirping during single bursts with δω ~ √t is consistent with hole-clump model predictions.


1982 ◽  
Vol 55 (4) ◽  
pp. 1078-1094 ◽  
Author(s):  
J. L. Turner ◽  
J. L. Ford

Abstract Cord-rubber composite systems allow a visualization of interply shear strain effects because of the compliant nature of the matrix material. A technique termed the pin test was developed to aid this visualization of interply shear strain. The pin test performed on both flat pads and radial tires shows that interlaminar shear strain behavior in both types of specimens is similar, most of the shear strain being confined to a region approximately 10 interly rubber thicknesses from the edge. The observed shear strain is approximately an order of magnitude greater than the applied extensional strain. A simplified mathematical model, called the Kelsey strip, for describing such behavior for a two-ply (±θ) cord-rubber strip has been formulated and demonstrated to be qualitatively correct. Furthermore, this model is capable of predicting trends in both compliant and rigid matrix composites and allows for simplified idealizations. A finite-element code for dealing with such interply effects in a simple but efficient manner predicts qualitatively correct results.


2004 ◽  
Vol 190 ◽  
pp. 307-313
Author(s):  
L. A. Venter ◽  
P. J. Meintjies

AbstractIn this paper we model the non-thermal radio to infra-red flares from AE Aqr. In our model the non-thermal flares originate in highly magnetized (Bblob ≥ 2000 G) blobs that may be among the propeller ejected outflow. It was shown that the condition ß ≤ 1 constrains the frozen-in magnetic field in these blobs to Bblob ≥ 2000 G, which is of the same order of magnitude as the inferred polar field of the secondary. As these magnetized blobs encounter the violent mhd-propeller, processes such as reconnection, magnetic pumping, and shocks will result in continuous acceleration of electrons from (γ = 2 → 30; δ = 2.8 → 2.6) with resultant synchrotron emission. The total radio to infra-red flare spectrum was modelled in terms of such expanding magnetized synchrotron emitting blobs in various stages of their evolution from ρ = (r/r°) = 1 → 400. In terms of our model, the total integrated flux during outbursts, over the wide frequency range from 1 GHz is the result of several (~ 20) synchrotron emitting blobs observed in different stages of their evolution, resulting in a spectrum showing a peak flux of Sv ~ 148 mJy at v ~ 1805 GHz (~ 166 microns), where the spectrum changes from a typical self-absorbed Sv ∝ vα spectrum to Sv ∝ v-(δ-1)/2 spectrum, i.e. where the blobs are combined optically thin.


1977 ◽  
Vol 99 (4) ◽  
pp. 634-640
Author(s):  
T. W. Thompson ◽  
S. Sen ◽  
K. E. Gray ◽  
T. F. Edgar

Tests have been carried out to quantify the variation in permeability of Texas lignite with drying and with applied stress. It has been shown that the matrix permeability of lignite may be increased from effectively zero to the order of 10 darcies by removing about 20 percent by weight of water. In addition, an increase of confining pressure after drying will reduce the permeability, but only by about one order of magnitude. Drying of the matrix thus may produce matrix permeabilities of the same order as the undried field fracture permeability. The permeability increase of the matrix is initially greater parallel to the bedding than perpendicular, but after further drying the two orientations show similar final permeabilities. This drying effect could have a significant influence on the operation of an in-situ gasification process by increasing the transmissivity and injectivity of the producing seam. Drying of the seam could occur by the flow of unsaturated gas and will be enhanced by combustion.


2018 ◽  
Vol 32 (16) ◽  
pp. 1850173
Author(s):  
Denghui Qian ◽  
Jianchun Wang

This paper applies coupled plane wave expansion and finite element (PWE/FE) method to calculate the band structure of the proposed three-component semi-infinite plate-like locally resonant phononic crystal (LRPC). In order to verify the accuracy of the result, the band structure calculated by PWE/FE method is compared to that calculated by the traditional finite element (FE) method, and the frequency range of the band gap in the band structure is compared to that of the attenuation in the transmission power spectrum. Numerical results and further analysis demonstrate that a band gap is opened by the coupling between the dominant vibrations of the rubber layer and the matrix modes. In addition, the influences of the geometry parameters on the band gap are studied and understood with the help of the simple “base-spring-mass” model, the influence of the viscidity of rubber layer on the band gap is also investigated.


1993 ◽  
Vol 292 (2) ◽  
pp. 425-430 ◽  
Author(s):  
V Besson ◽  
F Rebeille ◽  
M Neuburger ◽  
R Douce ◽  
E A Cossins

Plant tissues contain highly conjugated forms of folate. Despite this, the ability of plant folate-dependent enzymes to utilize tetrahydrofolate polyglutamates has not been examined in detail. In leaf mitochondria, the glycine-cleavage system and serine hydroxymethyltransferase, present in large amounts in the matrix space and involved in the photorespiratory cycle, necessitate the presence of tetrahydrofolate as a cofactor. The aim of the present work was to determine whether glutamate chain length (one to six glutamate residues) influenced the affinity constant for tetrahydrofolate and the maximal velocities displayed by these two enzymes. The results show that the affinity constant decreased by at least one order of magnitude when the tetrahydrofolate substrate contained three or more glutamate residues. In contrast, maximal velocities were not altered in the presence of these substrates. These results are consistent with analyses of mitochondrial folates which revealed a pool of polyglutamates dominated by tetra and pentaglutamates. The equilibrium constant of the serine hydroxymethyltransferase suggests that, during photorespiration, the reaction must be permanently pushed toward the formation of serine (the unfavourable direction) to allow the recycling of tetrahydrofolate necessary for the operation of the glycine decarboxylase T-protein.


Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6998
Author(s):  
Grigory Dolgikh ◽  
Sergey Budrin ◽  
Stanislav Dolgikh ◽  
Aleksandr Plotnikov

This paper presents an instrument based on an equal-arm Michelson interferometer and a frequency-stabilized helium-neon laser. It is designed to record hydrosphere pressure variations in the frequency range from 0 (conventionally) to 1000 Hz, with accuracy of 0.24 mPa at sea depths of up to 50 m. The operating range of the instrument can be increased by order of magnitude by improving the registration system speed, and accuracy can be enhanced by using larger diameter membranes and/or their smaller thickness. The paper demonstrates some experimental results obtained on the supersensitive detector of hydrosphere pressure variations, confirming its high performance in the infrasonic and sonic ranges.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Thomas Kaufmann ◽  
Akhilesh Verma ◽  
Van-Tan Truong ◽  
Bo Weng ◽  
Roderick Shepherd ◽  
...  

A planar antenna for ultra-wideband (UWB) applications covering the 3.1–10.6 GHz range has been designed as a test bed for efficiency measurements of antennas manufactured using polymer conductors. Two types of conductive polymers, PEDOT and PPy (polypyrrole), with very different thicknesses and conductivities have been selected as conductors for the radiating elements. A comparison between measured radiation patterns of the conductive polymers and a copper reference antenna allows to estimate the conductor losses of the two types of conductive polymers. For a 158 μm thick PPy polymer, an efficiency of almost 80% can be observed over the whole UWB spectrum. For a 7 μm thick PEDOT layer, an average efficiency of 26.6% demonstrates, considering the room for improvement, the potential of this type of versatile materials as flexible printable alternative to conductive metallic paints. The paper demonstrates that, even though the PEDOT conductivity is an order of magnitude larger than that of PPy, the thicker PPy layer leads to much higher efficiency over the whole UWB frequency range. This result highlights that high efficiency can be achieved not only through high conductivity, but also through a sufficiently thick layer of conductive polymers.


Sign in / Sign up

Export Citation Format

Share Document