Seasonally hibernating phenotype assessed through transcript screening

2006 ◽  
Vol 24 (1) ◽  
pp. 13-22 ◽  
Author(s):  
Daryl R. Williams ◽  
L. Elaine Epperson ◽  
Weizhong Li ◽  
Margaret A. Hughes ◽  
Ruth Taylor ◽  
...  

Hibernation is a seasonally entrained and profound phenotypic transition to conserve energy in winter. It involves significant biochemical reprogramming, although our understanding of the underpinning molecular events is fragmentary and selective. We have conducted a large-scale gene expression screen of the golden-mantled ground squirrel, Spermophilus lateralis, to identify transcriptional responses associated specifically with the summer-winter transition and the torpid-arousal transition in winter. We used 112 cDNA microarrays comprising 12,288 probes that cover at least 5,109 genes. In liver, the profiles of torpid and active states in the winter were almost identical, although we identified 102 cDNAs that were differentially expressed between winter and summer, 90% of which were downregulated in the winter states. By contrast, in cardiac tissue, 59 and 115 cDNAs were elevated in interbout arousal and torpor, respectively, relative to the summer active condition, but only 7 were common to both winter states, and during arousal none was downregulated. In brain, 78 cDNAs were found to change in winter, 44 of which were upregulated. Thus transcriptional changes associated with hibernation are qualitatively modest and, since these changes are generally less than twofold, also quantitatively modest. Unbiased Gene Ontology profiling of the transcripts suggests a winter switch to β-oxidation of lipids in liver and heart, a reduction in metabolism of toxic compounds and the urea cycle in liver, and downregulated electron transport in the brain. We identified just one strongly winter-induced transcript common to all tissues, namely an RNA-binding protein, RBM3. This analysis clearly differentiates responses of the principal tissues, identifies a large number of new genes undergoing regulation, and broadens our understanding of affected cellular processes that, in part, account for the winter-adaptive hibernating phenotype.

2020 ◽  
Vol 6 (18) ◽  
pp. eaaz5041 ◽  
Author(s):  
Zheng Fan ◽  
Jennifer R. Devlin ◽  
Simon J. Hogg ◽  
Maria A. Doyle ◽  
Paul F. Harrison ◽  
...  

The RNA polymerase II (POLII)–driven transcription cycle is tightly regulated at distinct checkpoints by cyclin-dependent kinases (CDKs) and their cognate cyclins. The molecular events underpinning transcriptional elongation, processivity, and the CDK-cyclin pair(s) involved remain poorly understood. Using CRISPR-Cas9 homology-directed repair, we generated analog-sensitive kinase variants of CDK12 and CDK13 to probe their individual and shared biological and molecular roles. Single inhibition of CDK12 or CDK13 induced transcriptional responses associated with cellular growth signaling pathways and/or DNA damage, with minimal effects on cell viability. In contrast, dual kinase inhibition potently induced cell death, which was associated with extensive genome-wide transcriptional changes including widespread use of alternative 3′ polyadenylation sites. At the molecular level, dual kinase inhibition resulted in the loss of POLII CTD phosphorylation and greatly reduced POLII elongation rates and processivity. These data define substantial redundancy between CDK12 and CDK13 and identify both as fundamental regulators of global POLII processivity and transcription elongation.


2021 ◽  
Author(s):  
Brunilda Balliu ◽  
Ivan Carcamo -Orive ◽  
Michael J. Gloudemans ◽  
Daniel C. Nachun ◽  
Matthew G. Durrant ◽  
...  

AbstractComplex traits and diseases can be influenced by both genetics and environment. However, given the large number of environmental stimuli and power challenges for gene-by-environment testing, it remains a critical challenge to identify and prioritize specific disease-relevant environmental exposures. We propose a novel framework for leveraging signals from transcriptional responses to environmental perturbations to identify disease-relevant perturbations that can modulate genetic risk for complex traits and inform the functions of genetic variants associated with complex traits. We perturbed human skeletal muscle, fat, and liver relevant cell lines with 21 perturbations affecting insulin resistance, glucose homeostasis, and metabolic regulation in humans and identified thousands of environmentally responsive genes. By combining these data with GWAS from 31 distinct polygenic traits, we show that heritability of multiple traits is enriched in regions surrounding genes responsive to specific perturbations and, further, that environmentally responsive genes are enriched for associations with specific diseases and phenotypes from the GWAS catalogue. Overall, we demonstrate the advantages of large-scale characterization of transcriptional changes in diversely stimulated and pathologically relevant cells to identify disease-relevant perturbations.


2010 ◽  
Vol 76 (16) ◽  
pp. 5432-5439 ◽  
Author(s):  
Etienne Yergeau ◽  
John R. Lawrence ◽  
Marley J. Waiser ◽  
Darren R. Korber ◽  
Charles W. Greer

ABSTRACT Pharmaceutical products are released at low concentrations into aquatic environments following domestic wastewater treatment. Such low concentrations have been shown to induce transcriptional responses in microorganisms, which could have consequences on aquatic ecosystem dynamics. In order to test if these transcriptional responses could also be observed in complex river microbial communities, biofilm reactors were inoculated with water from two rivers of differing trophic statuses and subsequently treated with environmentally relevant doses (ng/liter to μg/liter range) of four pharmaceuticals (erythromycin [ER], gemfibrozil [GM], sulfamethazine [SN], and sulfamethoxazole [SL]). To monitor functional gene expression, we constructed a 9,600-feature anonymous DNA microarray platform onto which cDNA from the biofilms was hybridized. Pharmaceutical treatments induced both positive and negative transcriptional responses from biofilm microorganisms. For instance, ER induced the transcription of several stress, transcription, and replication genes, while GM, a lipid regulator, induced transcriptional responses from several genes involved in lipid metabolism. SN caused shifts in genes involved in energy production and conversion, and SL induced responses from a range of cell membrane and outer envelope genes, which in turn could affect biofilm formation. The results presented here demonstrate for the first time that low concentrations of small molecules can induce transcriptional changes in a complex microbial community. The relevance of these results also demonstrates the usefulness of anonymous DNA microarrays for large-scale metatranscriptomic studies of communities from differing aquatic ecosystems.


2013 ◽  
Vol 45 (15) ◽  
pp. 653-666 ◽  
Author(s):  
Maia J. Benner ◽  
Matt L. Settles ◽  
Gordon K. Murdoch ◽  
Ronald W. Hardy ◽  
Barrie D. Robison

The potential benefits of selenium (Se) supplementation are currently under investigation for prevention of certain cancers and treatment of neurological disorders. However, little is known concerning the response of the brain to increased dietary Se under conditions of Se sufficiency, despite the majority of Se supplementation trials occurring in healthy, Se sufficient subjects. We evaluated the transcriptional response of Se-dependent genes, selenoproteins and the genes necessary for their synthesis (the selenoproteome), in the zebrafish ( Danio rerio) brain to supplementation with nutritionally relevant levels of dietary Se (sodium selenite) during conditions of assumed Se sufficiency. We first used a microarray approach to analyze the response of the brain selenoproteome to dietary Se supplementation for 14 days and then assessed the immediacy and time-scale transcriptional response of the brain selenoproteome to 1, 7, and 14 days of Se supplementation by quantitative real-time PCR (qRT-PCR). The microarray approach did not indicate large-scale influences of Se on the brain transcriptome as a whole or the selenoproteome specifically; only one nonselenoproteome gene (si:ch73-44m9.2) was significantly differentially expressed. Our qRT-PCR results, however, indicate that increases of dietary Se cause small, but significant transcriptional changes within the brain selenoproteome, even after only 1 day of supplementation. These responses were dynamic over a short period of supplementation in a manner highly dependent on sex and the duration of Se supplementation. In nutritional intervention studies, it may be necessary to utilize methods such as qRT-PCR, which allow larger sample sizes, for detecting subtle transcriptional changes in the brain.


2004 ◽  
Vol 5 (3) ◽  
pp. 216-224 ◽  
Author(s):  
Chandra L. Tucker ◽  
Stanley Fields

Understanding the actions of drugs and toxins in a cell is of critical importance to medicine, yet many of the molecular events involved in chemical resistance are relatively uncharacterized. In order to identify the cellular processes and pathways targeted by chemicals, we took advantage of the haploidSaccharomyces cerevisiaedeletion strains (Winzeleret al.,1999). Although ~4800 of the strains are viable, the loss of a gene in a pathway affected by a drug can lead to a synthetic lethal effect in which the combination of a deletion and a normally sublethal dose of a chemical results in loss of viability. WE carried out genome-wide screens to determine quantitative sensitivities of the deletion set to four chemicals: hydrogen peroxide, menadione, ibuprofen and mefloquine. Hydrogen peroxide and menadione induce oxidative stress in the cell, whereas ibuprofen and mefloquine are toxic to yeast by unknown mechanisms. Here we report the sensitivities of 659 deletion strains that are sensitive to one or more of these four compounds, including 163 multichemicalsensitive strains, 394 strains specific to hydrogen peroxide and/or menadione, 47 specific to ibuprofen and 55 specific to mefloquine.We correlate these results with data from other large-scale studies to yield novel insights into cellular function.


2021 ◽  
Author(s):  
Eun Seon Kim ◽  
Chang Geon Chung ◽  
Jeong Hyang Park ◽  
Byung Su Ko ◽  
Sung Soon Park ◽  
...  

Abstract RNA-binding proteins (RBPs) play essential roles in diverse cellular processes through post-transcriptional regulation of RNAs. The subcellular localization of RBPs is thus under tight control, the breakdown of which is associated with aberrant cytoplasmic accumulation of nuclear RBPs such as TDP-43 and FUS, well-known pathological markers for amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD). Here, we report in Drosophila model for ALS/FTD that nuclear accumulation of a cytoplasmic RBP, Staufen, may be a new pathological feature. We found that in Drosophila C4da neurons expressing PR36, one of the arginine-rich dipeptide repeat proteins (DPRs), Staufen accumulated in the nucleus in Importin- and RNA-dependent manner. Notably, expressing Staufen with exogenous NLS—but not with mutated endogenous NLS—potentiated PR-induced dendritic defect, suggesting that nuclear-accumulated Staufen can enhance PR toxicity. PR36 expression increased Fibrillarin staining in the nucleolus, which was enhanced by heterozygous mutation of stau (stau+/−), a gene that codes Staufen. Furthermore, knockdown of fib, which codes Fibrillarin, exacerbated retinal degeneration mediated by PR toxicity, suggesting that increased amount of Fibrillarin by stau+/− is protective. Stau+/− also reduced the amount of PR-induced nuclear-accumulated Staufen and mitigated retinal degeneration and rescued viability of flies expressing PR36. Taken together, our data show that nuclear accumulation of Staufen in neurons may be an important pathological feature contributing to the pathogenesis of ALS/FTD.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mark G. Sterken ◽  
Marijke H. van Wijk ◽  
Elizabeth C. Quamme ◽  
Joost A. G. Riksen ◽  
Lucinda Carnell ◽  
...  

AbstractEthanol-induced transcriptional changes underlie important physiological responses to ethanol that are likely to contribute to the addictive properties of the drug. We examined the transcriptional responses of Caenorhabditis elegans across a timecourse of ethanol exposure, between 30 min and 8 h, to determine what genes and genetic pathways are regulated in response to ethanol in this model. We found that short exposures to ethanol (up to 2 h) induced expression of metabolic enzymes involved in metabolizing ethanol and retinol, while longer exposure (8 h) had much more profound effects on the transcriptome. Several genes that are known to be involved in the physiological response to ethanol, including direct ethanol targets, were regulated at 8 h of exposure. This longer exposure to ethanol also resulted in the regulation of genes involved in cilia function, which is consistent with an important role for the effects of ethanol on cilia in the deleterious effects of chronic ethanol consumption in humans. Finally, we found that food deprivation for an 8-h period induced gene expression changes that were somewhat ameliorated by the presence of ethanol, supporting previous observations that worms can use ethanol as a calorie source.


2011 ◽  
Vol 2011 ◽  
pp. 1-15 ◽  
Author(s):  
Andrius Serva ◽  
Christoph Claas ◽  
Vytaute Starkuviene

In the last years miRNAs have increasingly been recognised as potent posttranscriptional regulators of gene expression. Possibly, miRNAs exert their action on virtually any biological process by simultaneous regulation of numerous genes. The importance of miRNA-based regulation in health and disease has inspired research to investigate diverse aspects of miRNA origin, biogenesis, and function. Despite the recent rapid accumulation of experimental data, and the emergence of functional models, the complexity of miRNA-based regulation is still far from being well understood. In particular, we lack comprehensive knowledge as to which cellular processes are regulated by which miRNAs, and, furthermore, how temporal and spatial interactions of miRNAs to their targets occur. Results from large-scale functional analyses have immense potential to address these questions. In this review, we discuss the latest progress in application of high-content and high-throughput functional analysis for the systematic elucidation of the biological roles of miRNAs.


2021 ◽  
Author(s):  
Michael R McAllaster ◽  
Jaya Bhushan ◽  
Dale R Balce ◽  
Anthony Orvedahl ◽  
Arnold Park ◽  
...  

Genes required for the lysosomal degradation pathway of autophagy play key roles in topologically distinct cellular processes with significant physiologic importance. One of the first-described of these ATG gene-dependent processes is the requirement for a subset of ATG genes in interferon-γ (IFNγ)-induced inhibition of Norovirus and Toxoplasma gondii replication. Herein we identified new genes that are required for or that negatively regulate this immune mechanism. Enzymes involved in the conjugation of UFM1 to target proteins including UFC1 and UBA5, negatively regulated IFNγ-induced inhibition of norovirus replication via effects of Ern1. IFNγ-induced inhibition of norovirus replication required Wipi2b and Atg9a, but not Becn1 (encoding Beclin1), Atg14, or Sqstm1. The phosphatidylinositol-3-phosphate and ATG16L1 binding domains of WIPI2B were required for IFNγ-induced inhibition of norovirus replication. Both WIPI2 and SQSTM1 were required for IFN?-induced inhibition of Toxoplasma gondii replication in HeLa cells. These studies further delineate the mechanisms of a programmable form of cytokine-induced intracellular immunity that relies on an expanding cassette of essential ATG genes to restrict the growth of phylogenetically diverse pathogens.


Sign in / Sign up

Export Citation Format

Share Document