scholarly journals New Thiophene Monolayer-Protected Copper Nanoparticles: Synthesis and Chemical-Physical Characterization

2008 ◽  
Vol 2008 ◽  
pp. 1-6 ◽  
Author(s):  
Elisabetta Foresti ◽  
Guido Fracasso ◽  
Massimiliano Lanzi ◽  
Isidoro Giorgio Lesci ◽  
Luisa Paganin ◽  
...  

For the first time copper 3-(6-mercaptohexyl)thiophene-protected nanoparticles (Cu T6SH) have been synthesized by a one-phase system, utilizing anNaBH4/LiCl mixture in diglyme as the reducing reagent and avoiding water medium dissolving copper salts. The prepared nanoclusters, characterized by transmission electron microscopy (TEM), have shown a constant spherical morphology with a size dimension of 5-6 nm in diameter. After their synthesis, no morphological evolution and irreversible aggregation process has been observed after a storage inCH2Cl2at low temperature for a period up to six months long. Cu T6SH nanoparticles have been investigated by UV-Visible (UV-Vis) and Fourier transmission infrared (FTIR) spectroscopes to characterize the alkylthiophenes monolayer conformations and the particles optoelectronic properties. The UV-Vis reveals the lack of the surface plasmonic band, previously observed in Cu-nanosized clusters at about 556–570 nm, and shows a wide-band centered at 293 nm, probably due to the high-conformational surface ordering of thiophene rings on the Cu core. The results highlight the importance of the modifications ported to the well-known one-phase synthetic reactions to obtain a clear lack, even after a storage of six months, of any irreversible aggregation that has always characterized chain thiophene-protected metallic nanoparticles.

Botany ◽  
2008 ◽  
Vol 86 (11) ◽  
pp. 1334-1342 ◽  
Author(s):  
Mahajabeen Padamsee ◽  
Gail J. Celio ◽  
David J. McLaughlin

Ultrastructure of the cystidia of Psathyrella aff. nolitangere (Fr.) A. Pearson & Dennis and Psathyrella rhodospora Weaver & Smith (Agaricales) was examined primarily using freeze substitution, with the goal of evaluating whether these cells could provide phylogenetically informative characters with which to study morphological evolution. Within the Agaricales, the diversity of cystidial form coupled with the limited number of studies makes accurate character coding for use in phylogenetic analyses problematic. This study revealed many common cystidial characteristics between the two closely related species examined, including well-formed apical crystals, abundant free ribosomes, and scattered smooth endoplasmic reticulum. Transmission electron microscopy was used for the first time to examine calcium oxalate crystals in cystidia, and demonstrated the formation of a pre-crystalline matrix at the apex of each cell that possibly disrupts the wall as the crystals form. The shared subcellular traits suggest that ultrastructural details of cystidia may provide additional characters for and signal in phylogenetic analyses.


2015 ◽  
Vol 22 (5) ◽  
pp. 1215-1226 ◽  
Author(s):  
Iztok Arčon ◽  
Stefano Paganelli ◽  
Oreste Piccolo ◽  
Michele Gallo ◽  
Katarina Vogel-Mikuš ◽  
...  

Klebsiella oxytocaBAS-10 ferments citrate to acetic acid and CO2, and secretes a specific exopolysaccharide (EPS), which is able to bind different metallic species. These biomaterials may be used for different biotechnological purposes, including applications as innovative green biogenerated catalysts. In production of biogenerated Pd species, the Fe(III) as ferric citrate is added to anaerobic culture ofK. oxytocaBAS-10, in the presence of palladium species, to increase the EPS secretion and improve Pd-EPS yield. In this process, bi-metallic (FePd-EPS) biomaterials were produced for the first time. The morphology of bi-metallic EPS, and the chemical state of the two metals in the FePd-EPS, are investigated by transmission electron microscopy, Fourier transform infra-red spectroscopy, micro-X-ray fluorescence, and X-ray absorption spectroscopy methods (XANES and EXAFS), and compared with mono-metallic Pd-EPS and Fe-EPS complexes. Iron in FePd-EPS is in the mineralized form of iron oxides/hydroxides, predominantly in the form of Fe3+, with a small amount of Fe2+in the structure, most probably a mixture of different nano-crystalline iron oxides and hydroxides, as in mono-metallic Fe-EPS. Palladium is found as Pd(0) in the form of metallic nanoparticles with face-centred cubic structure in both bi-metallic (FePd-EPS) and mono-metallic (Pd-EPS) species. In bi-metallic species, Pd and Fe nanoparticles agglomerate in larger clusters, but they remain spatially separated. The catalytic ability of bi-metallic species (FePd-EPS) in a hydrodechlorination reaction is improved in comparison with mono-metallic Pd-EPS.


2013 ◽  
Vol 1 ◽  
pp. 194308921350701 ◽  
Author(s):  
Prashant Singh

In the last few decades, an increasing commercial demand for metal nanoparticles is found due to their numerous applications in various fields such as electronics, catalysis in organic synthesis, material chemistry, energy, and medicine. Metallic nanoparticles are traditionally synthesized by wet chemical techniques, wherein the chemicals used are quite harmful and flammable. Herein, we reported a cheap and environment-friendly procedure for the synthesis of capped gold nanoparticles of different shapes from aqueous solution of tetrachloroauric acid (HAuCl4) using aqueous extract of Azolla pinnata, blue-green algae used as a reducing as well as capping agent. The so-prepared gold nanoparticles were well characterized by UV-visible spectroscopy, transmission electron microscopy (TEM), and quasi-elastic light scattering (QELS) techniques. The TEM showed nearly uniform distribution of the particles in water, which is again confirmed by QELS. This is for the first time that aqueous extract of A. pinnata was used for the synthesis of gold nanoparticles.


Author(s):  
Joanna L. Batstone

Interest in II-VI semiconductors centres around optoelectronic device applications. The wide band gap II-VI semiconductors such as ZnS, ZnSe and ZnTe have been used in lasers and electroluminescent displays yielding room temperature blue luminescence. The narrow gap II-VI semiconductors such as CdTe and HgxCd1-x Te are currently used for infrared detectors, where the band gap can be varied continuously by changing the alloy composition x.Two major sources of precipitation can be identified in II-VI materials; (i) dopant introduction leading to local variations in concentration and subsequent precipitation and (ii) Te precipitation in ZnTe, CdTe and HgCdTe due to native point defects which arise from problems associated with stoichiometry control during crystal growth. Precipitation is observed in both bulk crystal growth and epitaxial growth and is frequently associated with segregation and precipitation at dislocations and grain boundaries. Precipitation has been observed using transmission electron microscopy (TEM) which is sensitive to local strain fields around inclusions.


Author(s):  
Z.L. Wang ◽  
J. Bentley ◽  
R.E. Clausing ◽  
L. Heatherly ◽  
L.L. Horton

Microstructural studies by transmission electron microscopy (TEM) of diamond films grown by chemical vapor deposition (CVD) usually involve tedious specimen preparation. This process has been avoided with a technique that is described in this paper. For the first time, thick as-grown diamond films have been examined directly in a conventional TEM without thinning. With this technique, the important microstructures near the growth surface have been characterized. An as-grown diamond film was fractured on a plane containing the growth direction. It took about 5 min to prepare a sample. For TEM examination, the film was tilted about 30-45° (see Fig. 1). Microstructures of the diamond grains on the top edge of the growth face can be characterized directly by transmitted electron bright-field (BF) and dark-field (DF) images and diffraction patterns.


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 611
Author(s):  
Celia Marcos ◽  
María de Uribe-Zorita ◽  
Pedro Álvarez-Lloret ◽  
Alaa Adawy ◽  
Patricia Fernández ◽  
...  

Chert samples from different coastal and inland outcrops in the Eastern Asturias (Spain) were mineralogically investigated for the first time for archaeological purposes. X-ray diffraction, X-ray fluorescence, transmission electron microscopy, infrared and Raman spectroscopy and total organic carbon techniques were used. The low content of moganite, since its detection by X-ray diffraction is practically imperceptible, and the crystallite size (over 1000 Å) of the quartz in these cherts would be indicative of its maturity and could potentially be used for dating chert-tools recovered from archaeological sites. Also, this information can constitute essential data to differentiate the cherts and compare them with those used in archaeological tools. However, neither composition nor crystallite size would allow distinguishing between coastal and inland chert outcrops belonging to the same geological formations.


2020 ◽  
Vol 9 (1) ◽  
pp. 416-428 ◽  
Author(s):  
Raghad R. Alzahrani ◽  
Manal M. Alkhulaifi ◽  
Nouf M. Al-Enazi

AbstractThe adaptive nature of algae results in producing unique chemical components that are gaining attention due to their efficiency in many fields and abundance. In this study, we screened the phytochemicals from the brown alga Hydroclathrus clathratus and tested its ability to produce silver nanoparticles (AgNPs) extracellularly for the first time. Lastly, we investigated its biological activity against a variety of bacteria. The biosynthesized nanoparticles were characterized by UV-visible spectroscopy, Fourier-transform infrared spectroscopy, dynamic light scattering, transmission electron microscopy, and energy-dispersive spectroscopy. The biological efficacy of AgNPs was tested against eighteen different bacteria, including seven multidrug-resistant bacteria. Phytochemical screening of the alga revealed the presence of saturated and unsaturated fatty acids, sugars, carboxylic acid derivatives, triterpenoids, steroids, and other components. Formed AgNPs were stable and ranged in size between 7 and 83 nm and presented a variety of shapes. Acinetobacter baumannii, Staphylococcus aureus, Methicillin-resistant S. aureus (MRSA), and MDR A. baumannii were the most affected among the bacteria. The biofilm formation and development assay presented a noteworthy activity against MRSA, with an inhibition percentage of 99%. Acknowledging the future of nano-antibiotics encourages scientists to explore and enhance their potency, notably if they were obtained using green, rapid, and efficient methods.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2623
Author(s):  
Monika Wójcik-Bania ◽  
Jakub Matusik

Polymer–clay mineral composites are an important class of materials with various applications in the industry. Despite interesting properties of polysiloxanes, such matrices were rarely used in combination with clay minerals. Thus, for the first time, a systematic study was designed to investigate the cross-linking efficiency of polysiloxane networks in the presence of 2 wt % of organo-montmorillonite. Montmorillonite (Mt) was intercalated with six quaternary ammonium salts of the cation structure [(CH3)2R’NR]+, where R = C12, C14, C16, and R’ = methyl or benzyl substituent. The intercalation efficiency was examined by X-ray diffraction, CHN elemental analysis, and Fourier transform infrared (FTIR) spectroscopy. Textural studies have shown that the application of freezing in liquid nitrogen and freeze-drying after the intercalation increases the specific surface area and the total pore volume of organo-Mt. The polymer matrix was a poly(methylhydrosiloxane) cross-linked with two linear vinylsiloxanes of different siloxane chain lengths between end functional groups. X-ray diffraction and transmission electron microscopy studies have shown that the increase in d-spacing of organo-Mt and the benzyl substituent influence the degree of nanofillers’ exfoliation in the nanocomposites. The increase in the degree of organo-Mt exfoliation reduces the efficiency of hydrosilylation reaction monitored by FTIR. This was due to physical hindrance induced by exfoliated Mt particles.


2021 ◽  
Vol 22 (11) ◽  
pp. 6102
Author(s):  
Clara Mancuso ◽  
Francesca Re ◽  
Ilaria Rivolta ◽  
Luca Elli ◽  
Elisa Gnodi ◽  
...  

The introduction of metallic nanoparticles (mNPs) into the diet is a matter of concern for human health. In particular, their effect on the gastrointestinal tract may potentially lead to the increased passage of gluten peptides and the activation of the immune response. In consequence, dietary mNPs could play a role in the increasing worldwide celiac disease (CeD) incidence. We evaluated the potential synergistic effects that peptic-tryptic-digested gliadin (PT) and the most-used food mNPs may induce on the intestinal mucosa. PT interaction with mNPs and their consequent aggregation was detected by transmission electron microscopy (TEM) analyses and UV–Vis spectra. In vitro experiments on Caco-2 cells proved the synergistic cytotoxic effect of PT and mNPs, as well as alterations in the monolayer integrity and tight junction proteins. Exposure of duodenal biopsies to gliadin plus mNPs triggered cytokine production, but only in CeD biopsies. These results suggest that mNPs used in the food sector may alter intestinal homeostasis, thus representing an additional environmental risk factor for the development of CeD.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1343
Author(s):  
Caroline Tyavambiza ◽  
Abdulrahman Mohammed Elbagory ◽  
Abram Madimabe Madiehe ◽  
Mervin Meyer ◽  
Samantha Meyer

Cotyledon orbiculata, commonly known as pig’s ear, is an important medicinal plant of South Africa. It is used in traditional medicine to treat many ailments, including skin eruptions, abscesses, inflammation, boils and acne. Many plants have been used to synthesize metallic nanoparticles, particularly silver nanoparticles (AgNPs). However, the synthesis of AgNPs from C. orbiculata has never been reported before. The aim of this study was to synthesize AgNPs using C. orbiculata and evaluate their antimicrobial and immunomodulatory properties. AgNPs were synthesized and characterized using Ultraviolet-Visible Spectroscopy (UV-Vis), Dynamic Light Scattering (DLS) and High-Resolution Transmission Electron Microscopy (HR-TEM). The antimicrobial activities of the nanoparticles against skin pathogens (Staphylococcus aureus, Staphylococcus epidermidis, Methicillin Resistance Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans) as well as their effects on cytokine production in macrophages (differentiated from THP-1 cells) were evaluated. The AgNPs from C. orbiculata exhibited antimicrobial activity, with the highest activity observed against P. aeruginosa (5 µg/mL). The AgNPs also showed anti-inflammatory activity by inhibiting the secretion of pro-inflammatory cytokines (TNF-alpha, IL-6 and IL-1 beta) in lipopolysaccharide-treated macrophages. This concludes that the AgNPs produced from C. orbiculata possess antimicrobial and anti-inflammation properties.


Sign in / Sign up

Export Citation Format

Share Document