scholarly journals Studies on the Removal of Red Industrial Dye Using Teak Leaf, Maize Corn and Babool Tree Bark Carbons -A Comparison

2010 ◽  
Vol 7 (3) ◽  
pp. 770-774
Author(s):  
N. Kannan ◽  
A. Vijayakumar ◽  
P. Subramaniam

Activated carbons prepared from teak leaf (TLC), maize corn (MCC) and babool tree bark (BTBC) were used to study adsorption of red industrial dye under various experimental conditions. Effect of various experimental parameters such as initial concentration, adsorbent dosage, particle size, contact time and initial pH of solution was studied. Batch adsorption studies were carried out at room temperature (30±1°C). Adsorption parameters were modeled by Freundlich and Langmuir isotherm models. Adsorption data were fitted with the Natarajan and Khalaf, Lagergren and Bhattacharya -Venkobachar equations. The high value of 21.28 was obtained from Langmuir plot indicates maize corn carbon (MCC) is the best low cost adsorbent. The adsorption process followed first order kinetics, with intra- particle diffusion as one of the rate limiting steps

2009 ◽  
Vol 6 (3) ◽  
pp. 737-742 ◽  
Author(s):  
T. Santhi ◽  
S. Manonmani ◽  
S. Ravi

A new, low cost, locally available biomaterial was tested for its ability to remove cationic dyes from aqueous solution. A granule prepared from a mixture of leafs, fruits and twigs ofMuntingia calaburahad been utilized as a sorbent for uptake of three cationic dyes, methylene blue (MB), methylene red (MR) and malachite green (MG). The effects of various experimental parameters (e.g.,contact time, dye concentration, adsorbent dose and pH) were investigated and optimal experimental conditions were ascertained. Above the value of initial pH 6, three dyes studied could be removed effectively. The isothermal data fitted the Langmuir and Freundlich isotherm models for all three dyes sorption. The biosorption processes followed the pseudo-first order rate kinetics. The results in this study indicated thatMuntingia calaburawas an attractive candidate for removing cationic dyes from the dye wastewater.


Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1282
Author(s):  
Jorge Cesar Masini ◽  
Gilberto Abate

Natural and modified clay minerals have been extensively used for the adsorption/desorption of organic substances, especially pesticides, from waters and wastewater, aiming at pollution control and more efficient use of the herbicides through controlled release. While natural clay minerals efficiently remove organic cations such as paraquat and diquat, the adsorption of anionic or neutral species demands surface chemical modification with, for instance, quaternary ammonium salts containing long alkyl chains. Basic pesticides, on the other hand, are better absorbed in clay minerals modified with polycations. Kinetic studies and adsorption/desorption isotherms provide the parameters needed to evaluate the clay mineral’s adsorptive performance towards the pollutant target. However, the direct comparison of these parameters is complicated because the experimental conditions, the analytical techniques, the kinetic and isotherm models, and the numerical fitting method differ among the various studies. The free-energy-related Langmuir constant depends on the degree of site occupation; that is, it depends on the concentration window used to construct the adsorption isotherm and, consequently, on the analytical technique used to quantify the free concentrations. This paper reviews pesticides’ adsorption on natural and modified clay minerals and proposes guidelines for designing batch adsorption/desorption studies to obtain easily comparable and meaningful adsorption parameters. Articles should clearly describe the experimental conditions such as temperature, contact time, total concentration window, the solution to adsorbent ratio, the analytical technique, and its detection and quantification limits, besides the fitting models. Research should also evaluate the competitive effects of humic substances, colloidal inorganic particles, and ionic strength to emulate real-world adsorption experiments.


2009 ◽  
Vol 6 (3) ◽  
pp. 693-704 ◽  
Author(s):  
K. A. Emmanuel ◽  
A. Veerabhadra Rao

The adsorption of Mn(II) on indigenously prepared activated carbons (IPAC) fromBombax malabaricum,Pithecelobium dulse,Ipomea batatasandPeltaforum ferraginiumhave been studied. The effects of various experimental parameters have been investigated using batch adsorption technique. The extent of Mn(II) removal increased with decrease in initial concentration of the Mn(II), particle size of the adsorbent and increased with increase in contact time, amount of adsorbent used and the initial pH of the solution. Adsorption data were modeled using Freundlich and Langmuir adsorption isotherms and first order kinetic equations. The kinetics of adsorption was found to be first order with regard to intra-particle diffusion rate. The results indicate that such carbons could be employed as low cost adsorbents in waste water treatment for the removal of Mn(II).


2012 ◽  
Vol 30 (1) ◽  
pp. 81-95 ◽  
Author(s):  
Fadela Nemchi ◽  
Benaouda Bestani ◽  
Nouredine Benderdouche ◽  
Mostefa Belhakem ◽  
Louis Charles de Minorval

Adsorbents prepared from seawater algae, viz. green Ulva lactuca (PGA) and brown Systoceira stricta (PBA), by chemical activation were successfully tested for the removal of Supranol Yellow 4GL dye from aqueous solutions. Impregnation in 20% phosphoric acid for 2 h at 170 °C and subsequent air activation at 600 °C for 3 h significantly enhanced the adsorption capacities of both algae relative to their inactivated states. Parameters influencing the adsorption capacity such as contact time, adsorbent dosage, pH and temperature were studied. Similar experiments were carried out with commercially available Merck activated carbon (MAC) for comparative purposes. Adsorption efficiencies were measured at a pH 2 and dosages of 8 g/ℓ and 12 g/ℓ for PGA and PBA, respectively. Batch adsorption experiments resulted in maximum adsorption capacities determined from Langmuir models of up to 263, 93 and 84 mg/g for PGA, PBA and MAC, respectively. BET, FT-IR analyses, iodine number and Methylene Blue index determination were also performed to characterize the prepared adsorbents. The adsorption kinetics were found to comply with the pseudo-second-order model with intra-particle diffusion being the rate-determining step. Thermodynamic analysis confirmed that the adsorption reaction was spontaneous and endothermic. These studies indicate that these seawater algae could be used as low-cost alternatives for the removal of dyes.


2011 ◽  
Vol 671 ◽  
pp. 187-204
Author(s):  
A. Xavier ◽  
R Sathya ◽  
J. Gandhi Rajan ◽  
R. Nagarathnam

Many industries use dyes and pigments to colorize their products. Large amount different types of dyes enter in to the environment. These dyes are invariably left in the industrial wastes. As a part of removal of Bismark Brown dye from textile and leather industrial wastes, using activated carbon as adsorbents namely, commercial activated carbon (CAC), rose apple carbon (RAC), coconut shell carbon (CSC) and saw dust carbon (SDC). The percentage removal of Bismark-Brown adsorbed increases with decrease in initial concentration and particle size of adsorbent and increased with increase in contact time, temperature and dose of adsorbent. The pH is highly sensitive for dye adsorption process. The adsorption process followed first order kinetics and the adsorption data with Freundlich and Langmuir isotherm models. The first kinetic equations like Natarajan Khalaf, Lagergren, Bhattacharya and Venkobhachar and intra-particle diffusion were found to be applicable. A comparative account of the adsorption capacity of various carbons has been made. These activated carbons are alternative to commercial AC for the removal dyes in General and Bismark-brown (BB) is particular. These results are reported highly efficient and effective and low cost adsorbent for the BB. The thermodynamics parameters are also studied and it obeys spontaneous process. The results are confirmed by before and after adsorption process with the help of the following instrumental techniques viz., FT-IR, UV-Visible Spectrophotometer and SEM analyze.


2016 ◽  
Vol 15 ◽  
Author(s):  
Linda Biaw Leng Lim ◽  
Namal Priyantha ◽  
Hui Hsin Cheng ◽  
Nur Afiqah Hazirah

This study focused on the use of Parkia speciosa (Petai) pod as a potential adsorbent for the removal of crystal violet (CV) dye. Batch adsorption isotherm experiments carried out under optimized conditions were fitted to six isotherm models, namely Langmuir, Freundlich, Temkin, Dubinin-Radushkevich, Redlich-Peterson and Sips. Of these, the Sips model best described the adsorption isotherm of Petai pod for the removal of CV dye, giving a desirable adsorption capacity (qmax) of 163.2 mg g-1. Adsorption kinetics was found to follow the pseudo-second order, and further, intra-particle diffusion played a significant role. This study also revealed that the adsorption of CV by Petai pod is influenced by the ionic strength of the medium. However, Petai pod showed resilience towards changes in medium pH.  


2020 ◽  
Vol 2 (6) ◽  
pp. 175-181
Author(s):  
Ho Thi Yeu Ly ◽  
Hoang Thi Khanh Dieu ◽  
Trinh Minh Tan Sang ◽  
Le Nguyen Minh Nha

The use of adsorbent prepared from sugarcane bagasse, an agro waste from sugar industries has been studied as an alternative substitute for activated carbon for the removal of dyes from aqueous solution. Adsorbents prepared from sugarcane bagasse modified with citric acid was used as a low-cost biosorbent for removal of dyes from the aqueous solution. Adsorption parameters such as initial pH values, dyes concentrations, adsorbent dosages and contact times were investigated by the batch experiments. The Freundlich and Langmuir adsorption isotherm models were used to evaluate the experimental data. The results showed that the adsorption process of dyes onto the modified sugarcane bagasse leaned towards Langmuir model for MSB and Freundlich for SB. Maximum adsorption capacity of MSB was found to be 8.40 mg/g at pH 9. The results showed that the modified sugarcane bagasse with citric acid could be a potential low-priced adsorbent for removal of the color from the aqueous solution.  


2009 ◽  
Vol 6 (s1) ◽  
pp. S1-S11 ◽  
Author(s):  
B. R. Venkatraman ◽  
S. Parthasarathy ◽  
A. Kasthuri ◽  
P. Pandian ◽  
S. Arivoli

A carbonaceous adsorbent prepared from an indigenous waste, by acid treatment was tested for its efficiency in removing metal ions. The process parameters studied include agitation time, initial metal ions concentration, carbon dose, pH and temperature. The adsorption followed first order reaction equation and the rate is mainly controlled by intra-particle diffusion. Freundlich and Langmuir isotherm models were applied to the equilibrium data. The adsorption capacity (Qm) obtained from the Langmuir isotherm plot were found to around 30 mg/g at an initial pH of 7.0. The temperature variation study showed that the metal ions adsorption is endothermic and spontaneous with increased randomness at the solid solution interface. Significant effect on adsorption was observed on varying the pH of the metal ion solutions. The Langmuir and Freundlich adsorption isotherms obtained, positive ΔH0value, pH dependent results and desorption of metal ions in mineral acid suggest that the adsorption of metal ions on BBC involves chemisorption as well as physisorption mechanism.


2017 ◽  
Vol 76 (12) ◽  
pp. 3307-3318 ◽  
Author(s):  
Tingting Qin ◽  
Zhaowei Wang ◽  
Xiaoyun Xie ◽  
Chaoran Xie ◽  
Junmin Zhu ◽  
...  

Abstract The biochar was prepared by pyrolyzing the roots of cauliflowers, at a temperature of 500 °C under oxygen-limited conditions. The structure and characteristics of the biochar were examined using scanning electron microscopy, an energy dispersive spectrometer, a zeta potential analyzer, and Fourier transform infrared spectroscopy. The effects of the temperature, the initial pH, antibiotic concentration, and contact time on the adsorption of norfloxacin (NOR) and chlortetracycline (CTC) onto the biochar were investigated. The adsorption kinetics of NOR and CTC onto the biochar followed the pseudo-second-order kinetic and intra-particle diffusion models. The adsorption isotherm experimental data were well fitted to the Langmuir and Freundlich isotherm models. The maximum adsorption capacities of NOR and CTC were 31.15 and 81.30 mg/g, respectively. There was little difference between the effects of initial solution pH (4.0–10.0) on the adsorption of NOR or CTC onto the biochar because of the buffering effect. The biochar could remove NOR and CTC efficiently in aqueous solutions because of its large specific surface area, abundant surface functional groups, and particular porous structure. Therefore, it could be used as an excellent adsorbent material because of its low cost and high efficiency and the extensive availability of the raw materials.


2008 ◽  
Vol 5 (2) ◽  
pp. 187-200 ◽  
Author(s):  
S. Arivoli ◽  
M. Henkuzhali

A carbonaceous adsorbent prepared from an indigenous waste by acid treatment was tested for its efficiency in removing Rhodamine B (RDB). The parameters studied include agitation time, initial dye concentration, carbon dose, pH and temperature. The adsorption followed first order reaction equation and the rate is mainly controlled by intra-particle diffusion. Freundlich and Langmuir isotherm models were applied to the equilibrium data. The adsorption capacity (Qm) obtained from the Langmuir isotherm plots were 51.546, 47.236, 44.072 and 41.841 mg/g respectively at an initial pH of 7.0 at 30, 40, 50 and 60°C. The temperature variation study showed that the Rhodamine B adsorption is endothermic and spontaneous with increased randomness at the solid solution interface. Significant effect on adsorption was observed on varying the pH of the Rhodamine B solutions. Almost 90% removal of Rhodamine B was observed at 60°C. The Langmuir and Freundlich isotherms obtained, positive ΔH0value, pH dependent results and desorption of dye in mineral acid suggest that the adsorption of Rhodamine B on PSC involves physisorption mechanism.


Sign in / Sign up

Export Citation Format

Share Document