scholarly journals Hepatic Gene Expression Profiles Are Altered by Dietary Unsalted Korean Fermented Soybean (Chongkukjang) Consumption in Mice with Diet-Induced Obesity

2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
JuRyoun Soh ◽  
Dae Young Kwon ◽  
Youn-Soo Cha

We found that Chongkukjang, traditional unsalted fermented soybean, has an antiobesity effect in mice with diet-induced obesity and examined the changes in hepatic transcriptional profiles using cDNA microarray. High-fat diet-induced obese C57BL/6J mice were divided into three groups: normal-diet control group (NDcon, 10% of total energy from fat), high-fat diet control group (HDcon, 45% of total energy from fat), and HDcon plus 40% Chongkukjang (HDC) and were fed for 9 weeks. The HDC group mice were pair-fed (isocalorie) with mice in the HDcon group. Final body weight, epididymal fat accumulation, serum total cholesterol, and LDL-cholesterol were improved in HDC group. The cDNA microarray analyses revealed marked alterations in the expression of about 800 genes. Several genes involved in fatty acid catabolism (Acaa2, Mgll, Phyh, Slc27a2, and Slc27a5) were normalized by Chongkukjang consumption. This study showed beneficial effects of Chongkukjang consumption in preventing diet-induced obesity and related metabolic abnormalities.

Endocrinology ◽  
2013 ◽  
Vol 154 (3) ◽  
pp. 1047-1054 ◽  
Author(s):  
Denovan P. Begg ◽  
Joram D. Mul ◽  
Min Liu ◽  
Brianne M. Reedy ◽  
David A. D'Alessio ◽  
...  

Abstract Diet-induced obesity (DIO) reduces the ability of centrally administered insulin to reduce feeding behavior and also reduces the transport of insulin from the periphery to the central nervous system (CNS). The current study was designed to determine whether reversal of high-fat DIO restores the anorexic efficacy of central insulin and whether this is accompanied by restoration of the compromised insulin transport. Adult male Long-Evans rats were initially maintained on either a low-fat chow diet (LFD) or a high-fat diet (HFD). After 22 weeks, half of the animals on the HFD were changed to the LFD, whereas the other half continued on the HFD for an additional 8 weeks, such that there were 3 groups: 1) a LFD control group (Con; n = 18), 2) a HFD-fed, DIO group (n = 17), and 3) a HFD to LFD, DIO-reversal group (DIO-rev; n = 18). The DIO reversal resulted in a significant reduction of body weight and epididymal fat weight relative to the DIO group. Acute central insulin administration (8 mU) reduced food intake and caused weight loss in Con and DIO-rev but not DIO rats. Fasting cerebrospinal fluid insulin was higher in DIO than Con animals. However, after a peripheral bolus injection of insulin, cerebrospinal fluid insulin increased in Con and DIO-rev rats but not in the DIO group. These data provide support for previous reports that DIO inhibits both the central effects of insulin and insulin's transport to the CNS. Importantly, DIO-rev restored sensitivity to the effects of central insulin on food intake and insulin transport into the CNS.


2016 ◽  
Vol 2016 ◽  
pp. 1-10
Author(s):  
Hoe-Yune Jung ◽  
Yosep Ji ◽  
Na-Ri Kim ◽  
Do-Young Kim ◽  
Kyong-Tai Kim ◽  
...  

This study investigated the antiobesity effect of an extract of the Fomitopsis pinicola Jeseng-containing formulation (FAVA), which is a combination of four natural components:Fomitopsis pinicola Jeseng;Acanthopanax senticosus;Viscum album coloratum; andAllium tuberosum. High-fat diet- (HFD-) fed male C57BL/6J mice were treated with FAVA (200 mg/kg/day) for 12 weeks to monitor the antiobesity effect and amelioration of nonalcoholic fatty liver diseases (NAFLD). Body and white adipose tissue (WAT) weights were reduced in FAVA-treated mice, and a histological examination showed an amelioration of fatty liver in FAVA-treated mice without decreasing food consumption. Additionally, FAVA reduced serum lipid profiles, leptin, and insulin levels compared with the HFD control group. The FAVA extract suppressed lipogenic mRNA expression levels from WAT concomitantly with the cholesterol biosynthesis level in the liver. These results demonstrate the inhibitory effects of FAVA on obesity and NAFLD in the diet-induced obese (DIO) mouse model. Therefore, FAVA may be an effective therapeutic candidate for treating obesity and fatty liver caused by a high-fat diet.


Gene ◽  
2004 ◽  
Vol 340 (1) ◽  
pp. 99-109 ◽  
Author(s):  
Sujong Kim ◽  
Insuk Sohn ◽  
Joon-Ik Ahn ◽  
Ki-Hwan Lee ◽  
Yeon Sook Lee ◽  
...  

2020 ◽  
Vol Volume 13 ◽  
pp. 1147-1159
Author(s):  
Huimin Yang ◽  
Xin Xin ◽  
Hang Yu ◽  
Yandong Bao ◽  
Pengyu Jia ◽  
...  

F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 1798
Author(s):  
Swandari Paramita ◽  
Meiliati Aminyoto ◽  
Sjarif Ismail ◽  
Enos Tangke Arung

Background: Hypercholesterolemia, high cholesterol levels in the blood, can contribute to many forms of disease, most notably cardiovascular disease. Anti-hypercholesterolemic agents generally used for those conditions have several side effects for patients. Zingiber montanum, known locally as “bangle”, belongs to the family Zingiberaceae and is a potential plants for alternative anti-hypercholesterolemic agents. This plant, from East Kalimantan, is used in traditional medicine for health problems caused by high cholesterol levels. The aim of this research was to find alternatives to anti-hypercholesterolemic agents, especially from natural sources. Methods: This study was an experimental study using 30 Wistar male white rats. Subjects were randomly divided into 6 groups (n=5): (1) normal control group; (2) high fat diet control group; (3) high fat diet with simvastatin; (4-6) high fat diet with Zingiber montanum extracts 100, 200, and 400 mg/kg. After 4 weeks of treatment, blood was collected from all groups, and plasma concentrations of triglycerides, total cholesterol, high density lipoproteins (HDL), and low density lipoproteins (LDL) were measured. Results: The results showed significant differences in total cholesterol (p=0.000), LDL (p=0.000) and triglycerides (p=0.001) in the high-fat diet group with Z. montanum extract, as compared to the high-fat diet control. Meanwhile, there were no significant differences in HDL levels (p=0.830) between the high-fat diet group and other groups. The results also showed significant differences in total cholesterol and LDLs for rats treated with Z. montanum extract, 100 mg/kg (p=0.000), 200 mg/kg (p=0.000), and 400 mg/kg (p=0.000) compared to the high-fat diet group. The result of Z. montanum 400 mg/kg also showed a significant reduction, not only for total cholesterol and LDLs, but also for triglycerides (p=0.030). Conclusion: It could be concluded that Z. montanum extracts have the potency to be further developed as a new natural source of the anti-hypercholesterolemic agents.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Soo Im Chung ◽  
Mi Young Kang

Obesity is a significant risk factor for chronic diseases. The effect of ethanol extract from germinated Keunnunjami, blackish-purple rice with a giant embryo, compare to ordinary brown rice, on the body weight and lipid and glucose metabolism in high-fat diet-fed mice was analyzed. Mice were fed with a high-fat diet-fed for 3 weeks and then orally administered with either distilled water (HF) or extract (0.25%, w / w ) from brown, germinated brown, Keunnunjami, and germinated Keunnunjami rice for 4 weeks. Control mice were fed with a normal diet and orally administered with distilled water. The HF group showed markedly higher body weight and triglyceride, cholesterol, fatty acid, glucose, and insulin levels than the control group. However, the oral administration of rice extracts ameliorated this high-fat diet-induced obesity, hyperlipidemia, and hypoglycemia through the modulation of adipokine production, lipogenic and glucose-regulating enzyme activities, and mRNA expression of genes associated with lipid and glucose metabolism. The germinated Keunnunjami extract exhibited greater hypolipidemic, hypoglycemic, and body weight-lowering effects than the other rice extracts. The results demonstrated that germination could further enhance the physiological properties of rice and that germinated Keunnunjami extract has a strong therapeutic potential against high-fat diet-induced obesity, hyperlipidemia, and hyperglycemia.


2014 ◽  
Vol 5 (3) ◽  
pp. 335-344 ◽  
Author(s):  
M. Li ◽  
D. Gu ◽  
N. Xu ◽  
F. Lei ◽  
L. Du ◽  
...  

The aim of this study was to investigate the mechanisms underlying the involvement of gut microbes in body weight gain of high-fat diet-fed obesity-prone (obese) and obesity-resistant (lean) mice. C57BL/6 mice were grouped into an obese group, a lean group and a normal control group. Both obese and lean mice were fed a high-fat diet while normal control mice were fed a normal diet; they were observed for six weeks. The results showed that lean mice had lower serum lipid levels, body fat and weight gain than obese mice. The ATPase, succinate dehydrogenase and malate dehydrogenase activities in liver as well as oxygen expenditure and rectal temperature of lean mice were significantly lower than in obese mice. As compared with obese mice, the absorption of intestinal carbohydrates but not of fats or proteins was significantly attenuated in lean mice. Furthermore, 16S rRNA abundances of faecal Firmicutes and Bacteroidetes were significantly reduced in lean mice. In addition, faecal β-D-galactosidase activity and short chain fatty acid levels were significantly decreased in lean mice. Expressions of peroxisome proliferator-activated receptor gamma 2 and CCAAT/enhancer binding protein-β in visceral adipose tissues were significantly downregulated in lean mice as compared with obese mice. Resistance to dyslipidaemia and high-fat diet-induced obesity was mediated by ineffective absorption of intestinal carbohydrates but not of fats or proteins, probably through reducing gut Bacteroidetes and Firmicutes contents and lowering of gut carbohydrate metabolism. The regulation of intestinal carbohydrates instead of fat absorption by gut microbes might be a potential treatment strategy for high-fat diet-induced obesity.


Author(s):  
Satish Khaserao ◽  
Rahul Somani

Objective: This study was planned to study the anti-obesity activities of solasodine on high fat (HF) diet-induced obese rats.Methods: Wistar rats were divided into six groups. Control group (Group 1) received normal diet and 0.5 % CMC (5 ml/kg). HF control group (Group 2) received HF diet. Group 3 received orlistat (25 mg/kg body weight per oral). Group 4, 5 and 6 received 25, 50 and 100 mg/kg body weight solasodine respectively. Treatment was given for 6 w to the respective group along with HF diet. Body weight, food intake and abdomen circumference was measured every week for 6 w. On day 42, the serum biochemical parameters like blood glucose and insulin, serum leptin, total cholesterol and triglyceride were evaluated. Animals were sacrificed with overdose of diethyl ether. The liver and retroperitoneal adipose tissues were removed and weighed immediately.Results: Treatment with solasodine at dose of 50 mg/kg and 100 mg/kg significantly (p<0.001) reduced body weight, abdomen circumference and retroperitoneal adipose tissue weight as compared to the HF diet control group. Solasodine also significantly reduced serum total cholesterol, triglyceride and glucose level as compared to HF diet control group (***p<0.001, **p<0.01, *p<0.05 when compared with normal control. ###p<0.001, #p<0.05 when compared with high fat control). In addition, it also inhibited the induction of fatty liver with accumulation of hepatic triglyceride.Conclusion: Solasodine exhibited anti-obesity effect by showing a reduction in body weight, abdomen circumference, total cholesterol level, triglyceride level and glucose level in high-fat diet fed rats.


2009 ◽  
Vol 79 (4) ◽  
pp. 255-263 ◽  
Author(s):  
XiuHua Shen ◽  
QingYa Tang ◽  
Jiang Wu ◽  
Yi Feng ◽  
Juan Huang ◽  
...  

Objective: To evaluate the effect of vitamin E on the level of oxidative stress in diet-induced obese Sprague-Dawley rats. Methods: Thirty weaning male rats were placed into three groups with 10 animals each: a control group with normal chow, a diet-induced obesity group (DIO) with high-fat diet, and an intervention group with high-fat diet supplemented with vitamin E (VE, 350 mg/kg). Blood and adipose tissue were collected from rats after 10 weeks. Biomarkers of oxidative stress were detected for plasma 8-epi-prostaglandin- F2α (8-epi-PGF2α), thiobarbituric acid-reactive substances (TBARS), total anti-oxidative capacity (TAOC), α-tocopherol, superoxide dismutase (SOD) activity, and glutathione peroxidase activity (GPx). Lipid and glucose metabolism parameters such as plasma glucose, insulin, and triacylglycerol (TG) were also analyzed. Results: After 10 weeks, all obese rats (both the DIO and VE groups) had higher plasma 8-epi-PGF2α and TBARS levels than the controls. Their plasma-adjusted α-tocopherol, SOD, and GPx activities were lower than the control levels but insulin was higher (p<0.01). The VE intervention increased plasma SOD, GPx, and T-AOC, and decreased 8-epi-PGF2α (p<0.05). VE intervention also decreased plasma glucose, insulin, and TG levels (p<0.05). Conclusions: Increased oxidative stress could be an important target for the prevention of obesity-related diseases. Vitamin E has moderate effects for improvement of oxidative stress status and glucose metabolism in the animal model of diet-induced obesity.


2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 1192-1192
Author(s):  
Songhee Ahn ◽  
Hyun-Sook !Kim

Abstract Objectives The objective of this study was to investigate the anti-dyslipidemia effects of tart cherry supplementation on body weight and lipid profiles of serum in High Fat Diet-Fed Mice. Methods After 2 weeks of adaptation period, forty 7-week-old male C57BL/6J mice were randomly divided into 4 groups (n = 10 per group): normal diet control group (ND), high fat diet control group (HF), HF group fed with 1% tart cherry powder (LC, low dose of cherry), HF group fed with 5% tart cherry powder (HC, high dose of cherry). After 12 weeks of tart cherry dietary supplementation, serum triglyceride (TG), total cholesterol (TC), and high-density lipoprotein cholesterol (HDL-C) were analyzed. Results Final body weight of LC (1%) and HC (5%) was significantly lower than that of HF control group (P &lt; 0.001). Also, body weight gained in LC (1%) and HC (5%) was significantly lower than HF control group (P &lt; 0.001). In serum, triglyceride (TG) and total cholesterol (TC) levels were significantly lower in HC (5%) group compared to HF control group (P &lt; 0.05, P &lt; 0.001, respectively). Serum HDL-cholesterol levels in LC (1%) and HC (5%) groups was significantly higher than HF control group (P &lt; 0.05). Conclusions Tart cherry dietary supplementation may have an anti-dyslipidemia effect in high fat diet-fed mice by lowering body weight gain and modulating serum cholesterol levels. Further analysis of AMPK-regulated fatty acid oxidation biomarkers are under investigation. Funding Sources This study received no external funding.


Sign in / Sign up

Export Citation Format

Share Document