scholarly journals The Viscoelasticity Model of Corn Straw under the Different Moisture Contents

2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Sun Zhong-Zhen ◽  
Jiang Huan-Xin ◽  
Cai He-Ping ◽  
Yu Qiu-Sheng ◽  
Lu Li-Xin ◽  
...  

Viscoelastic model of corn straw, based on different moisture contents, is set up to characterise the deformation through three-point bending test. The model contains a linear elastic element, a damping element, and a nonlinear elastic element. The parameters of the model are determined according to the features of three-point bending test curve and characteristic of the model. The relationships between mechanical properties, energy absorption behavior of corn stalk, and moisture content have been, respectively, analysed. And regression analysis and curve fitting have been conducted based on various parameters and moisture contents with Matlab. These parameters provide the basis for straw crushing equipment design.

2011 ◽  
Vol 314-316 ◽  
pp. 2087-2090
Author(s):  
Gui Wen Yu

In order to set up a new effective method for measuring mechanical properties of the wood-plastics structural plates with stiffener, three different nondestructive testing (NDT) methods were used on the specimens with stiffener, which were made of virgin high-density polyethylene (HDPE) with poplar fibers as filler. The values of dynamic Young’s modulus of the specimens were measured by a FFT system. And the values of static bending modulus of elasticity (MOE) were also determined by three point bending test according to ASTM D790-03. The paper analyzed the variability of the dynamic Young’s modulus of specimens with stiffener obtained with different NDT methods, and the correlativity was also estimated between the dynamic Young’s modulus and the static MOE of all specimens. The results suggested that the intensity of the wood-plastics structural plates could be enhanced by stiffener, and the NDT methods could be appropriate to estimate the dynamic Young’s modulus of the wood-plastics structural plates with stiffener.


2013 ◽  
Vol 7 (3) ◽  
pp. 160-165 ◽  
Author(s):  
Łukasz Mazurkiewicz ◽  
Jerzy Małachowski ◽  
Krzysztof Damaziak ◽  
Paweł Baranowski ◽  
Paweł Gotowicki

Abstract The main objective of the study is to develop experimentally validated FE model and perform numerical analysis of layered composites made by hand lay-up techniques during tension and bending test. The research object is glass - polyester laminate made of four unidirectional layers. In order to validate the numerical models experimental test were performed. Due to the very different stiffness modulus in tension and bending loading the material properties obtained from standard test are not suitable to apply in numerical model. Significantly different behaviour compared to experimental test was obtained for tree point bending where the numerical model becomes too stiff. Simple coupons, relatively easy to manufacture presented in the paper have very low quality. The differences in actual and theoretical bending stiffness (obtained from tension stiffness) exceed 70%. In order to represent the actual structure the layers of the composite were divided by resin layers and also additional resin layer at the top and bottom of the model were defined. Single stage optimization process was used to adjust the material layout. After layer set-up modification very significant improvement can be seen for flexural behaviour


2015 ◽  
Vol 665 ◽  
pp. 181-184 ◽  
Author(s):  
Tomislav Lesičar ◽  
Zdenko Tonković ◽  
Jurica Sorić

Realistic description of heterogeneous material behavior demands more accurate modeling at macroscopic and microscopic scales. To observe strain localization phenomena and material softening occurring at the microstructural level, an analysis on the microlevel is unavoidable. Multiscale techniques employing several homogenization schemes can be found in literature. Widely used second-order homogenization requiresC1continuity at the macrolevel, while standardC0continuity has usually been hold at microlevel. However, due to theC1-C0transition macroscale variables cannot be defined fully consistently. The present contribution is concerned with a multiscale second-order computational homogenization employingC1continuity at both scales under assumptions of small strains and linear elastic material behavior. All algorithms derived are implemented into the FE software ABAQUS. The numerical efficiency and accuracy of the proposed computational strategy is demonstrated by modeling three point bending test of the notched specimen.


2018 ◽  
Vol 15 (1) ◽  
pp. 31
Author(s):  
Nur Aiman Suparlan ◽  
Muhammad Azrul Ku Ayob ◽  
Hazrina Ahmad ◽  
Siti Hawa Hamzah ◽  
Mohd Hisbany Mohd Hashim

A ribbed slab structure has the advantage in the reduction of concrete volume in between the ribs resulting in a lower structural self-weight. In order to overcome the drawbacks in the construction process, the application of steel fibre self-compacting concrete (SCFRC) is seen as an alternative material to be used in the slab. This preliminary investigation was carried out to investigate the flexural behaviour of steel fibre self-compacting concrete (SCFRC) as the main material in ribbed slab omitting the conventional reinforcements. Two samples of ribbed slab were prepared for this preliminary study; 2-ribbed and 3-ribbed in 1 m width to identify the effect of the geometry to the slab’s flexural behaviour. The dimension of both samples is 2.5 m x 1 m with 150 mm thickness. The compressive strength of the mix is 48.6 MPa based on the cubes tested at 28 days. Load was applied to failure by using the four point bending test set-up with simple support condition. The result of the experiment recorded ultimate load carrying capacity at 30.68 kN for the 2-ribbed slab and 25.52 kN for 3-ribbed slab. From the results, the ultimate load of the 2-ribbed sample exceeds 3-ribbed by approximately 20%. This proved that even with lower concrete volume, the sample can still withstand an almost similar ultimate load. Cracks was also observed and recorded with the maximum crack width of 2 mm. It can be concluded that the steel fibres do have the potential to withstand flexural loadings. Steel fibre reduces macro-crack forming into micro-cracks and improves concrete ductility, as well as improvement in deflection. This shows that steel fibre reinforced self-compacting concrete is practical as it offers good concrete properties as well as it can be mixed, placed easier without compaction. 


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2450
Author(s):  
Andreas Borowski ◽  
Christian Vogel ◽  
Thomas Behnisch ◽  
Vinzenz Geske ◽  
Maik Gude ◽  
...  

Continuous carbon fibre-reinforced thermoplastic composites have convincing anisotropic properties, which can be used to strengthen structural components in a local, variable and efficient way. In this study, an additive manufacturing (AM) process is introduced to fabricate in situ consolidated continuous fibre-reinforced polycarbonate. Specimens with three different nozzle temperatures were in situ consolidated and tested in a three-point bending test. Computed tomography (CT) is used for a detailed analysis of the local material structure and resulting material porosity, thus the results can be put into context with process parameters. In addition, a highly curved test structure was fabricated that demonstrates the limits of the process and dependent fibre strand folding behaviours. These experimental investigations present the potential and the challenges of additive manufacturing-based in situ consolidated continuous fibre-reinforced polycarbonate.


2015 ◽  
Vol 1100 ◽  
pp. 152-155
Author(s):  
Libor Topolář ◽  
Hana Šimonová ◽  
Petr Misák

This paper reports the analysis of acoustic emission signals captured during three-point bending fracture tests of concrete specimens with different mixture composition. Acoustic emission is an experimental tool well suited for monitoring fracture processes in material. The typical acoustic emission patterns were identified in the acoustic emission records for three different concrete mixtures to further describe the under-the-stress behaviour and failure development. An understanding of microstructure–performance relationships is the key to true understanding of material behaviour. The acoustic emission results are accompanied by fracture parameters determined via evaluation of load versus deflection diagrams recorded during three-point bending fracture tests.


2021 ◽  
Vol 55 ◽  
pp. 1114-1121
Author(s):  
Daniel Jindra ◽  
Zdeněk Kala ◽  
Jiří Kala ◽  
Stanislav Seitl

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3795
Author(s):  
Fernando Suárez ◽  
Jaime C. Gálvez ◽  
Marcos G. Alberti ◽  
Alejandro Enfedaque

The size effect on plain concrete specimens is well known and can be correctly captured when performing numerical simulations by using a well characterised softening function. Nevertheless, in the case of polyolefin-fibre-reinforced concrete (PFRC), this is not directly applicable, since using only diagram cannot capture the material behaviour on elements with different sizes due to dependence of the orientation factor of the fibres with the size of the specimen. In previous works, the use of a trilinear softening diagram proved to be very convenient for reproducing fracture of polyolefin-fibre-reinforced concrete elements, but only if it is previously adapted for each specimen size. In this work, a predictive methodology is used to reproduce fracture of polyolefin-fibre-reinforced concrete specimens of different sizes under three-point bending. Fracture is reproduced by means of a well-known embedded cohesive model, with a trilinear softening function that is defined specifically for each specimen size. The fundamental points of these softening functions are defined a priori by using empirical expressions proposed in past works, based on an extensive experimental background. Therefore, the numerical results are obtained in a predictive manner and then compared with a previous experimental campaign in which PFRC notched specimens of different sizes were tested with a three-point bending test setup, showing that this approach properly captures the size effect, although some values of the fundamental points in the trilinear diagram could be defined more accurately.


2015 ◽  
Vol 732 ◽  
pp. 85-90
Author(s):  
Lukáš Bek ◽  
Radek Kottner ◽  
Jan Krystek ◽  
Tomáš Kroupa

Different carbon and glass fibre strips were subjected to the double clamp buckle beam test. Furthermore, thin-walled glass fibre box-beams were subjected to the three-point bending test. Results of experiments were compared to different numerical simulations using buckling analysis or static analysis considering large deformations.


2013 ◽  
Vol 486 ◽  
pp. 283-288
Author(s):  
Ladislav Fojtl ◽  
Soňa Rusnáková ◽  
Milan Žaludek

This research paper deals with an investigation of the influence of honeycomb core compression on the mechanical properties of sandwich structures. These structures consist of prepreg facing layers and two different material types of honeycomb and are produced by modified compression molding called Crush-Core technology. Produced structures are mechanically tested in three-point bending test and subjected to low-velocity impact and Charpy impact test.


Sign in / Sign up

Export Citation Format

Share Document