scholarly journals Nutrition and the Risk of Alzheimer's Disease

2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Nan Hu ◽  
Jin-Tai Yu ◽  
Lin Tan ◽  
Ying-Li Wang ◽  
Lei Sun ◽  
...  

Alzheimer's disease (AD) is a progressive neurodegenerative disorder that accounts for the major cause of dementia, and the increasing worldwide prevalence of AD is a major public health concern. Increasing epidemiological studies suggest that diet and nutrition might be important modifiable risk factors for AD. Dietary supplementation of antioxidants, B vitamins, polyphenols, and polyunsaturated fatty acids are beneficial to AD, and consumptions of fish, fruits, vegetables, coffee, and light-to-moderate alcohol reduce the risk of AD. However, many of the results from randomized controlled trials are contradictory to that of epidemiological studies. Dietary patterns summarizing an overall diet are gaining momentum in recent years. Adherence to a healthy diet, the Japanese diet, and the Mediterranean diet is associated with a lower risk of AD. This paper will focus on the evidence linking many nutrients, foods, and dietary patterns to AD.

US Neurology ◽  
2010 ◽  
Vol 05 (02) ◽  
pp. 18 ◽  
Author(s):  
Simon Forstmeier ◽  
Andreas Maercker ◽  
◽  

This article summarises empirical findings on major potentially modifiable risk factors in the development of Alzheimer’s disease (AD), drawing on data from longitudinal epidemiological studies on the incidence of AD or any-cause dementia. Risk factors investigated to date include cognitive ability, motivational ability, emotional health, physical activity, social activity and social network, vascular risk factors and nutrition. The authors find most empirical support for two main clusters of risk factors that also represent potential targets for prevention. First, an active and stimulating lifestyle including cognitive, social, and physical activities reduces the risk of AD. Second, the absence of vascular risk factors such as diabetes, hypertension, hypercholesterol and obesity reduces the risk of AD. More prevention trials are warranted to investigate the preventative effects of an active and stimulating lifestyle on the one hand, and vascular health on the other, in delaying the onset of AD or slowing its progression.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Jose Miguel Rubio-Perez ◽  
Juana Maria Morillas-Ruiz

Alzheimer's disease (AD) is the most common neurodegenerative disorder to date. Neuropathological hallmarks areβ-amyloid (Aβ) plaques and neurofibrillary tangles, but the inflammatory process has a fundamental role in the pathogenesis of AD. Inflammatory components related to AD neuroinflammation include brain cells such as microglia and astrocytes, the complement system, as well as cytokines and chemokines. Cytokines play a key role in inflammatory and anti-inflammatory processes in AD. An important factor in the onset of inflammatory process is the overexpression of interleukin (IL)-1, which produces many reactions in a vicious circle that cause dysfunction and neuronal death. Other important cytokines in neuroinflammation are IL-6 and tumor necrosis factor (TNF)-α. By contrast, other cytokines such as IL-1 receptor antagonist (IL-1ra), IL-4, IL-10, and transforming growth factor (TGF)-βcan suppress both proinflammatory cytokine production and their action, subsequently protecting the brain. It has been observed in epidemiological studies that treatment with nonsteroidal anti-inflammatory drugs (NSAIDs) decreases the risk for developing AD. Unfortunately, clinical trials of NSAIDs in AD patients have not been very fruitful. Proinflammatory responses may be countered through polyphenols. Supplementation of these natural compounds may provide a new therapeutic line of approach to this brain disorder.


Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 383 ◽  
Author(s):  
Yam Nath Paudel ◽  
Efthalia Angelopoulou ◽  
Christina Piperi ◽  
Iekhsan Othman ◽  
Khurram Aamir ◽  
...  

Alzheimer’s disease (AD) is a devastating neurodegenerative disorder and a leading cause of dementia, with accumulation of amyloid-beta (Aβ) and neurofibrillary tangles (NFTs) as defining pathological features. AD presents a serious global health concern with no cure to date, reflecting the complexity of its pathogenesis. Recent evidence indicates that neuroinflammation serves as the link between amyloid deposition, Tau pathology, and neurodegeneration. The high mobility group box 1 (HMGB1) protein, an initiator and activator of neuroinflammatory responses, has been involved in the pathogenesis of neurodegenerative diseases, including AD. HMGB1 is a typical damage-associated molecular pattern (DAMP) protein that exerts its biological activity mainly through binding to the receptor for advanced glycation end products (RAGE) and toll-like receptor 4 (TLR4). RAGE and TLR4 are key components of the innate immune system that both bind to HMGB1. Targeting of HMGB1, RAGE, and TLR4 in experimental AD models has demonstrated beneficial effects in halting AD progression by suppressing neuroinflammation, reducing Aβ load and production, improving spatial learning, and inhibiting microglial stimulation. Herein, we discuss the contribution of HMGB1 and its receptor signaling in neuroinflammation and AD pathogenesis, providing evidence of its beneficial effects upon therapeutic targeting.


2017 ◽  
Vol 1 (1) ◽  
pp. 30-33 ◽  
Author(s):  
Varshil Mehta ◽  
Kavya Bhatt ◽  
Nimit Desai ◽  
Mansi Naik

Alzheimer’s disease (AD) is a chronic and slowly progressing neurodegenerative disorder which has become a major health concern worldwide. The literature has shown that oxidative stress is one of the most important risk factors behind the cause of AD. Oxidative stress often leads to the production of Reactive Oxygen Species (ROS). D-Galactose, a physiological nutrient and reducing sugar, non-enzymatically reacts with amines of amino acids in proteins and peptides to form Advanced Glycation End products which activate its receptors coupled to Biochemical pathways that stimulate free radical production and induces mitochondrial dysfunction which damages the neuron intracellularly. High dosage of D-Galactose also suppresses the expression of nerve growth factors and its associated protein which results in the degeneration of nerve cells and reduction of acetylcholine levels in brain regions. This article put forwards the advantages of using Lactic Acid Bacteria (Probiotics) possessing anti-oxidant properties and which produces Acetyl Choline against D-Galactose induced Alzheimer’s disease.


2021 ◽  
Vol 18 ◽  
Author(s):  
Chiara Burgaletto ◽  
Giulia Di Benedetto ◽  
Antonio Munafò ◽  
Renato Bernardini ◽  
Giuseppina Cantarella

Background: Alzheimer’s disease (AD) is the most common form of neurodegenerative disorder characterized by cognitive impairment, which represents an urgent public health concern. Given the worldwide impact of AD, there is a compelling need for effective therapies to slow down or halt this disorder. Objective: Choline alphoscerate (α-GPC) represents a potentially effective cholinergic neurotrans- mission enhancing agent with an interesting clinical profile in cognitive dysfunctions improve- ment, although only scanty data are available about the mechanisms underlying such beneficial ef- fects. Method: The SH-SY5Y neuronal cell line, differentiated for 1 week with 10 μm of all-trans-reti- noic acid (RA), to achieve a switch towards a cholinergic phenotype, was used as an in vitro model of AD. SH-SY5Y cells were pre-treated for 1h with α-GPC (100nM) and treated for 72 h with Aβ25-35 (10μM). Results: α-GPC was able to antagonize Aβ25-35 mediated neurotoxicity and attenuate the Aβ-in- duced phosphorylation of the Tau protein. Moreover, α-GPC exerted its beneficial effects by em- ploying the NGF/TrkA system, knocked down in AD and, consequently, by sustaining the expres- sion level of synaptic vesicle proteins, such as synaptophysin. Conclusion: Taken together, our data suggest that α-GPC can have a role in neuroprotection in the course of toxic challenges with Aβ. Thus, a deeper understanding of the mechanism underlying its beneficial effect, could provide new insights into potential future pharmacological applications of its functional cholinergic enhancement, with the aim to mitigate AD and could represent the basis for innovative therapy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jing Li ◽  
Qingxia Huang ◽  
Jinjin Chen ◽  
Hongyu Qi ◽  
Jiaqi Liu ◽  
...  

Alzheimer’s disease (AD), a neurodegenerative disorder, is a major health concern in the increasingly aged population worldwide. Currently, no clinically effective drug can halt the progression of AD. Panax ginseng C.A. Mey. is a well-known medicinal plant that contains ginsenosides, gintonin, and other components and has neuroprotective effects against a series of pathological cascades in AD, including beta-amyloid formation, neuroinflammation, oxidative stress, and mitochondrial dysfunction. In this review, we summarize the effects and mechanisms of these major components and formulas containing P. ginseng in neuronal cells and animal models. Moreover, clinical findings regarding the prevention and treatment of AD with P. ginseng or its formulas are discussed. This review can provide new insights into the possible use of ginseng in the prevention and treatment of AD.


Author(s):  
X.-X. Zhang ◽  
Y. Tian ◽  
Z.-T. Wang ◽  
Y.-H. Ma ◽  
L. Tan ◽  
...  

Mild Alzheimer’s disease is the leading cause of dementia, accounting for 50-70% of cases. Alzheimer’s disease is an irreversible neurodegenerative disease, which affects daily life activities and social functioning. As life expectancy increases and demographic ageing occurs, the global prevalence of Alzheimer’s disease is expected to continue to rise especially in developing countries, leading to a costly burden of disease. Alzheimer’s disease is a complex and multifactorial disorder that is determined by the interaction of genetic susceptibility and environmental factors across the life course. Epidemiological studies have identified potential modifiable risk and protective factors for Alzheimer’s disease prevention. Moreover, Alzheimer’s disease is considered to start decades earlier before clinical symptoms occur, thus interventions targeting several risk factors in non-demented elderly people even middle-aged population might prevent or delay Alzheimer’s disease onset. Here, we provide an overview of current epidemiological advances related to Alzheimer’s disease modifiable risk factors, highlighting the concept of early prevention.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xin Zhang ◽  
Chenjing Ma ◽  
Long Sun ◽  
Zhao He ◽  
Ying Feng ◽  
...  

Abstract Background Alzheimer’s disease (AD), an age-related neurodegenerative disorder and a serious public health concern, is mainly caused by β-amyloid (Aβ)-induced toxicity. Currently, a limited number of drugs are effective against AD, and only a few are used for its treatment. According to traditional Chinese medicine, white wax is mainly composed of policosanol, hexacosanol, and octacosanol. Policosanol has been shown to reduce lipid levels in blood and alleviate the symptoms associated with diabetic complications and neurodegenerative disorders, such as Parkinson’s disease and AD. However, the efficacy of policosanol depends on the purity and composition of the preparation, and the therapeutic efficacy of policosanol derived from insect wax (PIW) in AD is unknown. Methods Here, we identified the main components of PIW and investigated the effects of PIW on Aβ-induced toxicity and life-span in a transgenic Caenorhabditis elegans model of AD, CL4176. Furthermore, we estimated the expression of amyloid precursor-like protein (apl-1) and the genes involved in various pathways associated with longevity and alleviation of AD-related symptoms in PIW-fed CL4176. Results PIW mainly consists of tetracosanol, hexacosanol, octacosanol, and triacontanol; it could decrease the Aβ-induced paralysis rate from 86.87 to 66.97% (P < 0.01) and extend the life-span from 6.2 d to 7.8 d (P < 0.001) in CL4176 worms. Furthermore, PIW downregulated apl-1, a gene known to be associated with the levels of Aβ deposits in C. elegans. Additionally, our results showed that PIW modulated the expression of genes associated with longevity-related pathways such as heat shock response, anti-oxidative stress, and glutamine cysteine synthetase. Conclusion Our findings suggest that PIW may be a potential therapeutic agent for the prevention and treatment of AD. However, its effects on murine models and patients with AD need to be explored further.


2010 ◽  
Vol 15 (1) ◽  
pp. 4-11 ◽  
Author(s):  
Sridhar Krishnamurti

Alzheimer's disease is neurodegenerative disorder which affects a growing number of older adults every year. With an understanding of auditory dysfunction in Alzheimer's disease, the speech-language pathologist working in the health care setting can provide better service to these individuals. The pathophysiology of the disease process in Alzheimer's disease increases the likelihood of specific types of auditory deficits as opposed to others. This article will discuss the auditory deficits in Alzheimer's disease, their implications, and the value of clinical protocols for individuals with this disease.


2020 ◽  
Vol 18 (4) ◽  
pp. 354-359
Author(s):  
Shirin Tarbiat ◽  
Azize Simay Türütoğlu ◽  
Merve Ekingen

Alzheimer's disease is a neurodegenerative disorder characterized by memory loss and impairment of language. Alzheimer's disease is strongly associated with oxidative stress and impairment in the cholinergic pathway, which results in decreased levels of acetylcholine in certain areas of the brain. Hence, inhibition of acetylcholinesterase activity has been recognized as an acceptable treatment against Alzheimer's disease. Nature provides an array of bioactive compounds, which may protect against free radical damage and inhibit acetylcholinesterase activity. This study compares the in vitro antioxidant and anticholinesterase activities of hydroalcoholic extracts of five cultivars of Rosa Damascena Mill. petals (R. damascena 'Bulgarica', R. damascena 'Faik', R. damascena 'Iranica', R. damascena 'Complex-635' and R. damascena 'Complex-637') from Isparta, Turkey. The antioxidant activities of the hydroalcoholic extracts were tested for ferric ion reduction and DPPH radical scavenging activities. The anti-acetylcholinesterase activity was also evaluated. All rose cultivars showed a high potency for scavenging free radical and inhibiting acetylcholinesterase activity. There was a significant correlation between antioxidant and acetylcholinesterase inhibitory activity. Among cultivars, Complex-635 showed the highest inhibitory effect with an IC50 value of 3.92 µg/mL. Our results suggest that all these extracts may have the potential to treat Alzheimer's disease with Complex-635 showing more promise.


Sign in / Sign up

Export Citation Format

Share Document