scholarly journals Decrease of Obesity by Allantoin via Imidazoline I1-Receptor Activation in High Fat Diet-Fed Mice

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Hsien-Hui Chung ◽  
Kung Shing Lee ◽  
Juei-Tang Cheng

The activation of the imidazoline I1-receptor (I1R) is known to regulate appetite. Allantoin, an active ingredient in the yam, has been reported to improve lipid metabolism in high fat diet- (HFD-)fed mice. However, the effect of allantoin on obesity remains unclear. In the present study, we investigated the effects of allantoin on HFD-induced obesity. The chronic administration of allantoin to HFD-fed mice for 8 weeks significantly decreased their body weight, and this effect was reversed by efaroxan at a dose sufficient to block I1R. The epididymal white adipose tissue (eWAT) cell size and weight in HFD-fed mice were also decreased by allantoin via the activation of I1R. In addition, allantoin significantly decreased the energy intake of HFD-fed mice, and this reduction was associated with a decrease in the NPY levels in the brain. However, no inhibitory effect of allantoin on energy intake was observed in db/db mice. Moreover, allantoin lowered HFD-induced hyperleptinemia, and this activity was abolished by I1R blockade with efaroxan. Taken together, these data suggest that allantoin can ameliorate energy intake and eWAT accumulation by activating I1R to improve HFD-induced obesity.

2016 ◽  
Vol 48 (7) ◽  
pp. 491-501 ◽  
Author(s):  
Madeliene Stump ◽  
Deng-Fu Guo ◽  
Ko-Ting Lu ◽  
Masashi Mukohda ◽  
Xuebo Liu ◽  
...  

Peroxisome proliferator-activated receptor-γ (PPARγ), a master regulator of adipogenesis, was recently shown to affect energy homeostasis through its actions in the brain. Deletion of PPARγ in mouse brain, and specifically in the pro-opiomelanocortin (POMC) neurons, results in resistance to diet-induced obesity. To study the mechanisms by which PPARγ in POMC neurons controls energy balance, we constructed a Cre-recombinase-dependent conditionally activatable transgene expressing either wild-type (WT) or dominant-negative (P467L) PPARγ and the tdTomato reporter. Inducible expression of both forms of PPARγ was validated in cells in culture, in liver of mice infected with an adenovirus expressing Cre-recombinase (AdCre), and in the brain of mice expressing Cre-recombinase either in all neurons (NESCre/PPARγ-P467L) or selectively in POMC neurons (POMCCre/PPARγ-P467L). Whereas POMCCre/PPARγ-P467L mice exhibited a normal pattern of weight gain when fed 60% high-fat diet, they exhibited increased weight gain and fat mass accumulation in response to a 10% fat isocaloric-matched control diet. POMCCre/PPARγ-P467L mice were leptin sensitive on control diet but became leptin resistant when fed 60% high-fat diet. There was no difference in body weight between POMCCre/PPARγ-WT mice and controls in response to 60% high-fat diet. However, POMCCre/PPARγ-WT, but not POMCCre/PPARγ-P467L, mice increased body weight in response to rosiglitazone, a PPARγ agonist. These observations support the concept that alterations in PPARγ-driven mechanisms in POMC neurons can play a role in the regulation of metabolic homeostasis under certain dietary conditions.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Souravh Bais ◽  
Guru Sewak Singh ◽  
Ramica Sharma

In the present study, the methanolic extract of Moringa oleifera leaves (MEMOL) was evaluated for antiobesity activity in rats. The antiobesity potential of MEMOL was studied against high fat diet-induced obesity (HFD) in rats. In this study, chronic administration of HFD in rats produced hypercholesterolemia (116.2 ± 0.27 mg/dL), which led to an increase in the body weight (225 gr), total cholesterol, triglycerides (263.0 ± 4.69 mg/dL), and attenuation in the levels of HDL (34.51 ± 2.20 mg/dL) as well as changes in body temperature of animals. Treatment of obese rats with MEMOL for 49 days resulted in a significant (P<0.001) change in body weight, total cholesterol, triglycerides, and LDL level along with a significant (P<0.001) increase in body temperature as compared to the HFD-induced obesity. MEMOL treated rats also showed a significant decrease in the level of liver biomarkers, organ weight, and blood glucose level. Further, rats treated with MEMOL (200 mg and 400 mg/kg) show reduced atherogenic index (1.7 ± 0.6 and 0.87 ± 0.76). The results indicate that the rats treated with Moringa oleifera (MO) have significantly attenuated the body weight without any change in the feed intake and also elicited significant thermogenic effect and to act as hypolipidemic and thermogenic property in obesity related disorders.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Rieko Takanabe ◽  
Koh Ono ◽  
Tomohide Takaya ◽  
Takahiro Horie ◽  
Hiromichi Wada ◽  
...  

Obesity is the result of an expansion and increase in the number of individual adipocytes. Since changes in gene expression during adipocyte differentiation and hypertrophy are closely associated with insulin resistance and cardiovascular diseases, further insight into the molecular basis of obesity is needed to better understand obesity-associated diseases. MicroRNAs (miRNAs) are approximately 17–24nt single stranded RNA, that post-transcriptionally regulate gene expression. MiRNAs control cell growth, differentiation and metabolism, and may be also involved in pathogenesis and pathophysiology of diseases. It has been proposed that miR-143 plays a role in the differentiation of preadipocytes into mature adipocytes in culture. However, regulated expression of miR-143 in the adult adipose tissue during the development of obesity in vivo is unknown. To solve this problem, C57BL/6 mice were fed with either high-fat diet (HFD) or normal chow (NC). Eight weeks later, severe insulin resistance was observed in mice on HFD. Body weight increased by 35% and the mesenteric fat weight increased by 3.3-fold in HFD mice compared with NC mice. We measured expression levels of miR-143 in the mesenteric fat tissue by real-time PCR and normalized with those of 5S ribosomal RNA. Expression of miR-143 in the mesenteric fat was significantly up-regulated (3.3-fold, p<0.05) in HFD mice compared to NC mice. MiR-143 expression levels were positively correlated with body weight (R=0.577, p=0.0011) and the mesenteric fat weight (R=0.608, p=0.0005). We also measured expression levels in the mesenteric fat of PPARγ and AP2, whose expression are deeply involved in the development of obesity, insulin resistant and arteriosclerosis. The expression levels of miR-143 were closely correlated with those of PPARγ (R=0.600, p=0.0040) and AP2 (R=0.630, p=0.0022). These findings provide the first evidence for up-regulated expression of miR-143 in the mesenteric fat of HFD-induced obese mice, which might contribute to regulated expression of genes involved in the pathophysiology of obesity.


Author(s):  
Randall F. D'Souza ◽  
Stewart W.C. Masson ◽  
Jonathan S. T. Woodhead ◽  
Samuel L James ◽  
Caitlin MacRae ◽  
...  

Neutrophils accumulate in insulin sensitive tissues during obesity and may play a role in impairing insulin sensitivity. The major serine protease expressed by neutrophils is neutrophil elastase (NE), which is inhibited endogenously by α1-antitrypsin A (A1AT). We investigated the effect of exogenous (A1AT) treatment on diet induced metabolic dysfunction. Male C57Bl/6j mice fed a chow or a high fat diet (HFD) were randomized to receive 3x weekly i.p injections of either Prolastin (human A1AT; 2mg) or vehicle (PBS) for 10 weeks. Prolastin treatment did not affect plasma NE concentration, body weight, glucose tolerance or insulin sensitivity in chow fed mice. In contrast, Prolastin treatment attenuated HFD induced increases in plasma and white adipose tissue (WAT) NE without affecting circulatory neutrophil levels or increases in body weight. Prolastin-treated mice fed a HFD had improved insulin sensitivity, as assessed by insulin tolerance test, and this was associated with higher insulin-dependent IRS-1 (insulin receptor substrate) and AktSer473phosphorylation, and reduced inflammation markers in WAT but not liver or muscle. In 3T3-L1 adipocytes, Prolastin reversed recombinant NE-induced impairment of insulin-stimulated glucose uptake and IRS-1 phosphorylation. Furthermore, PDGF mediated p-AktSer473 activation and glucose uptake (which is independent of IRS-1) was not affected by recombinant NE treatment. Collectively, our findings suggest that NE infiltration of WAT during metabolic overload contributes to insulin-resistance by impairing insulin-induced IRS-1 signaling.


Nutrients ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1353
Author(s):  
Ji Hyun Kim ◽  
Sanghyun Lee ◽  
Eun Ju Cho

Obesity increases risk of Alzheimer’s Disease (AD). A high fat diet (HFD) can lead to amyloidosis and amyloid beta (Aβ) accumulation, which are hallmarks of AD. In this study, protective effects of the ethyl acetate fraction of Acer okamotoanum (EAO) and isoquercitrin were evaluated on obesity and amyloidosis in the HFD- and Aβ-induced mouse model. To induce obesity and AD by HFD and Aβ, mice were provided with HFD for 10 weeks and were intracerebroventricularly injected with Aβ25–35. For four weeks, 100 and 10 mg/kg/day of EAO and isoquercitrin, respectively, were administered orally. Administration of EAO and isoquercitrin significantly decreased body weight in HFD and Aβ-injected mice. Additionally, EAO- and isoquercitrin-administered groups attenuated abnormal adipokines release via a decrease in leptin and an increase in adiponectin levels compared with the control group. Furthermore, HFD and Aβ-injected mice had damaged liver tissues, but EAO- and isoquercitrin-administered groups attenuated liver damage. Moreover, administration of EAO and isoquercitrin groups down-regulated amyloidosis-related proteins in the brain such as β-secretase, presenilin (PS)-1 and PS-2 compared with HFD and Aβ-injected mice. This study indicated that EAO and isoquercitrin attenuated HFD and Aβ-induced obesity and amyloidosis, suggesting that they could be effective in preventing and treating both obesity and AD.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Jun Muratsu ◽  
Yoshiaki Taniyama ◽  
Fumihiro Sanada ◽  
Atsuyuki Morishima ◽  
Katsuhiko Sakaguchi ◽  
...  

Abstract Background and Aims Obesity and its associated chronic inflammation in adipose tissue initiate insulin resistance, which is related to several pathologies including hypertension and atherosclerosis. Previous reports demonstrated that circulating hepatocyte growth factor (HGF) level was associated with obesity and type 2 diabetes. However, its precise role in obesity and related-pathology is unclear. Method In this experiment, cardiac-specific over-expression of human HGF in mice (HGF-Tg mice) which showed 4-5 times higher serum HGF levels than wild-type mice were used. We chose cardiac specific HGF overexpression, as other strain of HGF transgenic mice such as liver and kidney specific HGF overexpression mice develop cancer and cystic diseases, which are rare in the heart. In the present study, using HGF-Tg mice and anti-HGF neutralizing antibody (HGF-Ab), we explored the role of HGF in obese and insulin resistance induced by high fat diet (HFD) for 14 weeks (200 or 400ug/week). Results With normal chow diet (ND), there were no significant changes in body weight between WT and HGF-Tg mice. While body weight in wild-type mice fed with HFD for 14 weeks was significantly increased accompanied with insulin resistance, HGF-Tg mice prevented body weight gain and insulin resistance. Insulin resistance in obesity arises from the combination of altered functions of insulin target cells (e.g., liver, skeletal muscle, and adipose tissue) and the accumulation of macrophages that secrete pro-inflammatory mediators in adipose tissue. The accumulation of macrophages and elevated levels of inflammatory mediators in adipose tissue were significantly inhibited in HGF-Tg mice as compared to wild-type mice. In the gWAT, the mRNA levels of the mature macrophage marker F4/80, the chemoattractants, MCP-1 and CXCL2, and the inflammatory cytokines, such as TNF-α and iNOS, were significantly increased in WT mice fed with HFD. However, these levels were markedly reduced in HGF-Tg mice fed with HFD. Additionally, activation of Akt by insulin administration was significantly reduced in the gWAT SM, and liver by HFD; however, this activation was restored in HGF-Tg mice. Moreover, insulin-induced Akt signaling was decreased in HGF-Ab groups as compared to saline group under HFD condition. Importantly, HFD significantly increased the level of HGF mRNA by approximately 2 fold in gWAT, SM, and liver without changing cMet expression. All together, these data indicate that the HGF as one of the systemic gWAT, SM, and liver-derived growth factor plays a role in compensatory mechanism against insulin-resistance through the at least anti-inflammatory effect in adipose tissue. The HFD-induced obesity in wild-type mice treated with HGF-neutralizing antibody showed an exacerbated response to the glucose tolerance test. Conclusion HGF suppresses inflammation in adipose tissue induced by a high-fat diet, and as a result improves systemic insulin resistance. These gain-of-function and loss-of-function studies demonstrated that the elevated HGF level induced by HFD have protective role against obesity and insulin resistance.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Yunjung Baek ◽  
Mi Nam Lee ◽  
Dayong Wu ◽  
Munkyong Pae

Abstract Objectives Previously, we showed that loss of ovarian function in mice fed high-fat diet exacerbated insulin resistance and adipose tissue inflammation. In the current study, we tested whether consumption of luteolin, an anti-inflammatory flavonoid, could mitigate adipose tissue inflammation and insulin resistance in obese ovariectomized mice. Methods Nine-week-old ovariectomized C57BL/6 mice were fed a low-fat diet (LFD), high-fat diet (HFD), or HFD supplemented with 0.005% luteolin (HFD + L) for 16 weeks. The anti-inflammatory drug salicylate was used as a positive control. Fasting blood glucose, insulin, and insulin resistance index HOMA-IR were measured every 4 weeks. Adipose tissue and spleen were characterized for tissue inflammation by real-time PCR and immune cell populations by flow cytometry after 16 weeks of feeding. Results HFD resulted in more body weight gain than LFD in ovariectomized mice and supplementing HFD with 0.005% luteolin did not affect the body weight gain. In addition, HFD elicited a significant elevation in fat mass, which were comparable between HFD and HFD + L groups. However, luteolin supplementation resulted in a significant decrease in CD11c+ macrophages in gonadal adipose tissue, as well as a trend of decrease in macrophage infiltration. Luteolin supplementation also significantly decreased mRNA expression of inflammatory and M1 markers MCP-1, CD11c, TNF-a, and IL-6, while maintaining expression of M2 marker MGL1. We further found that luteolin treatment protected mice from insulin resistance induced by HFD consumption; this improved insulin resistance was correlated with reductions in CD11c+ adipose tissue macrophages. Conclusions Our findings indicate that dietary luteolin supplementation attenuates adipose tissue inflammation and insulin resistance found in mice with loss of ovarian function coupled with a HFD intake, and this effect may be partly mediated through suppressing M1-like polarization of macrophages in adipose tissue. These results have clinical implication in implementing dietary intervention for prevention of metabolic syndrome associated with postmenopause and obesity. Funding Sources Supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (NRF-2018R1A1A1A05078886).


2017 ◽  
Vol 45 (04) ◽  
pp. 813-832 ◽  
Author(s):  
Hyeon-Jeong Kim ◽  
Sanghwa Kim ◽  
Ah Young Lee ◽  
Yoonjeong Jang ◽  
Orkhonselenge Davaadamdin ◽  
...  

This study used an integrated approach to investigate the effects of Gymnema sylvestre (GS) extract as a functional dietary supplement with a high-fat diet. This approach examined insulin resistance, the dysfunction of adipose tissue, and liver steatosis. Male C57BL/6J mice were fed a normal chow or high-fat diet (HFD) for the acute and chronic study, in addition to GS in different doses (100, 250 and 500[Formula: see text]mg/kg body weight). Their body composition changes, serum lipid and glucose parameters, adipose and liver tissue histology, and gene expression were measured. It was found that GS significantly suppressed the increase of body weight, serum levels of lipid, insulin and leptin, and adipose tissue, and liver inflammation. GS also demonstrated hypoglycemic effects due to the amylase inhibition activity. Our results support the existence of a relationship between the HFD induced insulin resistance, adipose dysfunction and liver steatosis. In conclusion, GS works as a functional dietary supplement with preventative effects against metabolic disorder.


Sign in / Sign up

Export Citation Format

Share Document