scholarly journals Hydraphiles: A Rigorously Studied Class of Synthetic Channel Compounds withIn VivoActivity

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Saeedeh Negin ◽  
Bryan A. Smith ◽  
Alexandra Unger ◽  
W. Matthew Leevy ◽  
George W. Gokel

Hydraphiles are a class of synthetic ion channels that now have a twenty-year history of analysis and success. In early studies, these compounds were rigorously validated in a wide range ofin vitroassays including liposomal ion flow detected by NMR or ion-selective electrodes, as well as biophysical experiments in planar bilayers. During the past decade, biological activity was observed for these compounds including toxicity to bacteria, yeast, and mammalian cells due to stress caused by the disruption of ion homeostasis. The channel mechanism was verified in cells using membrane polarity sensitive dyes, as well as patch clamping studies. This body of work has provided a solid foundation with which hydraphiles have recently demonstrated acute biological toxicity in the muscle tissue of living mice, as measured by whole animal fluorescence imaging and histological studies. Here we review the critical structure-activity relationships in the hydraphile family of compounds and thein vitroandin celluloexperiments that have validated their channel behavior. This report culminates with a description of recently reported efforts in which these molecules have demonstrated activity in living mice.

2019 ◽  
Vol 6 ◽  
pp. 204993611983716 ◽  
Author(s):  
Glynn W. Webb ◽  
Harry R. Dalton

Hepatitis E virus (HEV) is the most common cause of viral hepatitis in the world. It is estimated that millions of people are infected every year, resulting in tens of thousands of deaths. However, these estimates do not include industrialized regions and are based on studies which employ assays now known to have inferior sensitivity. As such, this is likely to represent a massive underestimate of the true global burden of disease. In the developing world, HEV causes large outbreaks and presents a significant public-health problem. Until recently HEV was thought to be uncommon in industrialized countries, and of little relevance to clinicians in these settings. We now know that this is incorrect, and that HEV is actually very common in developed regions. HEV has proved difficult to study in vitro, with reliable models only recently becoming available. Our understanding of the lifecycle of HEV is therefore incomplete. Routes of transmission vary by genotype and location: endemic regions experience large waterborne epidemics, while sporadic cases in industrialized regions are zoonotic infections likely spread via the food chain. Both acute and chronic infection has been observed, and a wide range of extrahepatic manifestations have been reported. This includes neurological, haematological and renal conditions. As the complete clinical phenotype of HEV infection is yet to be characterized, a large proportion of cases go unrecognized or misdiagnosed. In many cases HEV infection does not feature in the differential diagnosis due to a lack of knowledge and awareness of the disease amongst clinicians. In combination, these factors have contributed to an underestimation of the threat posed by HEV. Improvements are required in terms of recognition and diagnosis of HEV infection if we are to understand the natural history of the disease, improve management and reduce the burden of disease around the world.


2006 ◽  
Vol 951 ◽  
Author(s):  
Pavan M. V. Raja ◽  
Jennifer Connolley ◽  
Pulickel M. Ajayan ◽  
Omkaram Nalamasu ◽  
Deanna M. Thompson

ABSTRACTThe increasing importance of nanomaterial-related applications has given rise to concerns pertaining to their impact on human health. In vitro mammalian cell-based assays can provide a quick and simple estimate of the possible adverse effects of the nanomaterials. However, recent studies have questioned the efficacy of traditional assays such as the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, in evaluating cell-nanomaterial interactions, implying the need for alternate methods. We applied image analysis to enumerate the DAPI (2-[4-(Aminomethyl) phenyl]-1H-indole-6-carboximidamide, dihydrochloride) – stained cellular nuclei. Image analysis, being non-destructive, capable of automation, and applicable over a wide range of cell seeding densities, offers several advantages compared to older methods like the MTT assay and hemocytometry. Using image analysis, the impact of singlewalled carbon nanotubes (SWNT) on rat aortic smooth muscle cell (SMC) growth kinetics, were examined. Despite the carbon nanomaterial presence, the fluorescent signal from the nuclei was not noticeably impacted over the SWNT range examined (0.00-0.10 mg/ml). We anticipate that this method can also be applied to evaluate the biological impact of other nanomaterials.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6550
Author(s):  
Vladislav I. Deigin ◽  
Julia E. Vinogradova ◽  
Dmitry L Vinogradov ◽  
Marina S. Krasilshchikova ◽  
Vadim T. Ivanov

The paper summarizes the available information concerning the biological properties and biomedical applications of Thymodepressin. This synthetic peptide drug displays pronounced immunoinhibitory activity across a wide range of conditions in vitro and in vivo. The history of its unforeseen discovery is briefly reviewed, and the current as well as potential expansion areas of medicinal practice are outlined. Additional experimental evidence is obtained, demonstrating several potential advantages of Thymodepressin over another actively used immunosuppressor drug, cyclosporin A.


1998 ◽  
Vol 17 (5) ◽  
pp. 571-575 ◽  
Author(s):  
Amy L. Ellis

Drugs from a variety of chemical classes used for a wide range of therapeutic indications can be photosensitizers in humans. Several drugs are phototoxic in animal models as well; there are no nonclinical data for many. In vitro tests have been developed as predictors of phototoxicity and although they have been used as screens, none have replaced the in vivo tests done in rodents (usually mice or guinea pigs) since these have been good predictors of clinical phototoxicity. Some phototoxic drug classes are co-carcinogens with ultraviolet radiation (UVA and/or UVB) in hairless mice, specifically psoralens, retinoids, and fluo-roquinolones. Treatment with 8-methoxypsoralen and ultraviolet A radiation for psoriasis is also carcinogenic in humans. It has been suggested that in vitro photogenotoxicity assays using microorganisms or mammalian cells may be predictive of photo co-carcinogenicity. Some attractions of these in vitro assays, compared to the hairless mouse photo co-carcinogenicity assay, are their generally shorter duration and lower cost as well as reducing the number of animals used in research. Currently, personnel at the Food and Drug Administration (FDA) are examining the available data on phototoxicity, photogenotoxicity, and photo co-carcinogenicity to determine how this information can best be used toregulate and label drug products, and considering which assays should be recommended under specific circumstances.


2021 ◽  
Vol 22 (15) ◽  
pp. 8312
Author(s):  
Daniela Valenti ◽  
Rosa Anna Vacca ◽  
Loredana Moro ◽  
Anna Atlante

Mitochondria are complex intracellular organelles traditionally identified as the powerhouses of eukaryotic cells due to their central role in bioenergetic metabolism. In recent decades, the growing interest in mitochondria research has revealed that these multifunctional organelles are more than just the cell powerhouses, playing many other key roles as signaling platforms that regulate cell metabolism, proliferation, death and immunological response. As key regulators, mitochondria, when dysfunctional, are involved in the pathogenesis of a wide range of metabolic, neurodegenerative, immune and neoplastic disorders. Far more recently, mitochondria attracted renewed attention from the scientific community for their ability of intercellular translocation that can involve whole mitochondria, mitochondrial genome or other mitochondrial components. The intercellular transport of mitochondria, defined as horizontal mitochondrial transfer, can occur in mammalian cells both in vitro and in vivo, and in physiological and pathological conditions. Mitochondrial transfer can provide an exogenous mitochondrial source, replenishing dysfunctional mitochondria, thereby improving mitochondrial faults or, as in in the case of tumor cells, changing their functional skills and response to chemotherapy. In this review, we will provide an overview of the state of the art of the up-to-date knowledge on intercellular trafficking of mitochondria by discussing its biological relevance, mode and mechanisms underlying the process and its involvement in different pathophysiological contexts, highlighting its therapeutic potential for diseases with mitochondrial dysfunction primarily involved in their pathogenesis.


2017 ◽  
Vol 37 (5) ◽  
Author(s):  
Jie Xiang ◽  
Mei Zhou ◽  
Yuxin Wu ◽  
Tianbao Chen ◽  
Chris Shaw ◽  
...  

Bombinin and bombinin H are two antimicrobial peptide (AMP) families initially discovered from the skin secretion of Bombina that share the same biosynthetic precursor-encoding cDNAs, but have different structures and physicochemical properties. Insight into their possible existing relationship lead us to perform the combination investigations into their anti-infectious activities. In this work, we report the molecular cloning and functional characterization of two novel AMPs belonging to bombinin and bombinin H families from secretions of Bombina orientalis. Their mature peptides (BHL-bombinin and bombinin HL), coded by single ORF, were chemically synthesized along with an analogue peptide that replaced L-leucine with D-leucine from the second position of the N-terminus (bombinin HD). CD analysis revealed that all of them displayed well-defined α-helical structures in membrane mimicking environments. Furthermore, BHL-bombinin displayed broad-spectrum bactericidal activities on a wide range of microorganisms, while bombinin H only exhibited a mildly bacteriostatic effect on the Gram-positive bacteria Staphylococcus aureus. The combination potency of BHL-bombinin with either bombinin HL or bombinin HD showed the synergistic inhibition activities against S. aureus (fractional inhibitory concentration index (FICI): 0.375). A synergistic effect has also been observed between bombinin H and ampicillin, which was further systematically evaluated and confirmed by in vitro time-killing investigations. Haemolytic and cytotoxic examinations exhibited a highly synergistic selectivity and low cytotoxicity on mammalian cells of these three peptides. Taken together, the discovery of the potent synergistic effect of AMPs in a single biosynthetic precursor with superior functional selectivity provides a promising strategy to combat multidrug-resistant pathogens in clinical therapy.


Plant Disease ◽  
1998 ◽  
Vol 82 (5) ◽  
pp. 496-500 ◽  
Author(s):  
Urs W. Hilber ◽  
Maja Hilber-Bodmer

The anilinopyrimidines constitute a new class of mainly protective, broad-spectrum fungicides with a high activity against Botryotinia fuckeliana, the causal agent of gray mold on a wide range of host plants. The present study was initiated to investigate the genetic basis of resistance to anilinopyrimidines in B. fuckeliana and to assess the frequency of resistant isolates in vineyards in Switzerland exposed to experimental applications of anilinopyrimidines. In mating experiments, two sensitive reference isolates were crossed with three anilinopyrimidine-resistant field isolates. The analysis of 72 sexual progeny from six apothecia demonstrated that resistance to the anilinopyrimidine fungicide cyprodinil segregated in a 1:1 ratio and is therefore monogenic. The same segregation ratio was found for resistance to the dicarboximide fungicide vinclozolin. Resistance to cyprodinil segregated independently from resistance to vinclozolin. From 1993 to 1995, isolates of B. fuckeliana were collected in Switzerland from five vineyards that differed in their anilinopyrimidine spray history. Of a total of 303 isolates tested in vitro, three anilinopyrimidine-resistant isolates were detected in two vineyards where the cumulative number of treatments was between two and nine. The results of the study are discussed with respect to the implementation of an antiresistance strategy in Switzerland.


2019 ◽  
Author(s):  
Dan I. Piraner ◽  
Yan Wu ◽  
Mikhail G. Shapiro

ABSTRACTProtein-protein interactions and protein localization are essential mechanisms of cellular signal transduction. The ability to externally control such interactions using chemical and optogenetic methods has facilitated biological research and provided components for the engineering of cell-based therapies and materials. However, chemical and optical methods are limited in their ability to provide spatiotemporal specificity in light-scattering tissues. To overcome these limitations, we present “thermomers,” modular protein dimerization domains controlled with temperature – a form of energy that can be delivered to cells both globally and locally in a wide variety of in vitro and in vivo contexts. Thermomers are based on a sharply thermolabile coiled-coil protein, which we engineered to heterodimerize at a tunable transition temperature within the biocompatible range of 37–42 °C. When fused to other proteins, thermomers can reversibly control their association, as demonstrated via membrane localization in mammalian cells. This technology enables remote control of intracellular protein-protein interactions with a form of energy that can be delivered with spatiotemporal precision in a wide range of biological, therapeutic and living material scenarios.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rehana Parveen ◽  
Prasanta Kumar Maiti ◽  
Nabendu Murmu ◽  
Alokmay Datta

AbstractFollowing access into the cell, colloidal silver nanoparticles exhibit generalized cytotoxic properties, thus appear as omnipotent microbicidal, but not suitable for systemic use unless are free of toxic effects on host cells. The AgNP-Serum-18 when prepared from silver nitrate, using dextrose as reducing and group-matched homologous serum as a stabilizing agent, selective endocytosis, and oxidative stress-dependent bio-functional damages to the host are mostly eliminated. For their bio-mimicking outer coat, there is the least possibility of internalization into host cells or liberation of excess oxidants in circulation following interaction with erythrocytes or vascular endothelial cells. The presence of infection-specific antibodies in the serum can make such nano-conjugates more selective. A potent antimicrobial action and a wide margin of safety for mammalian cells in comparison with very similar PVA-capped silver nanoparticles have been demonstrated by the in-vitro challenge of such nanoparticles on different microbes, human liver cell-line, and in-vivo study on mice model. This may open up wide-range therapeutic prospects of colloidal nanoparticles.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1993
Author(s):  
Anna Myriam Perrone ◽  
Gloria Ravegnini ◽  
Stefano Miglietta ◽  
Lisa Argnani ◽  
Martina Ferioli ◽  
...  

Electrochemotherapy (ECT) is an emerging treatment for solid tumors and an attractive research field due to its clinical results. This therapy represents an alternative local treatment to the standard ones and is based on the tumor-directed delivery of non-ablative electrical pulses to maximize the action of specific cytotoxic drugs such as cisplatin (CSP) and bleomycin (BLM) and to promote cancer cell death. Nowadays, ECT is mainly recommended as palliative treatment. However, it can be applied to a wide range of superficial cancers, having an impact in preventing or delaying tumor progression and therefore in improving quality of life. In addition, during the natural history of the tumor, early ECT may improve patient outcomes. Our group has extensive clinical and research experience on ECT in vulvar tumors in the palliative setting, with 70% overall response rate. So far, in most studies, ECT was based on BLM. However, the potential of CSP in this setting seems interesting due to some theoretical advantages. The purpose of this report is to: (i) compare the efficacy of CSP and BLM-based ECT through a systematic literature review; (ii) report the results of our studies on CSP-resistant squamous cell tumors cell lines and the possibility to overcome chemoresistance using ECT; (iii) discuss the future ECT role in gynecological tumors and in particular in vulvar carcinoma.


Sign in / Sign up

Export Citation Format

Share Document