scholarly journals Immunostimulatory Activity of Protein Hydrolysate from Oviductus Ranae on MacrophageIn Vitro

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Di Huang ◽  
Lubing Yang ◽  
Chenlu Wang ◽  
Sihui Ma ◽  
Li Cui ◽  
...  

Oviductus Ranae is the dry oviduct ofRana chensinensis, which is also calledR. chensinensisoil. Oviductus Ranae is a valuable Chinese crude drug and is recorded in the Pharmacopoeia of the People’s Republic of China. The aim of this study was to investigate the immunostimulatory activity of protein hydrolysate of Oviductus Ranae (ORPH) and to assess its possible mechanism. Immunomodulatory activity of ORPH was examined in murine macrophage RAW 264.7 cells. The effect of ORPH on the phagocytic activity of macrophages was determined by the neutral red uptake assay. After treatment with ORPH, NO production levels in the culture supernatant were investigated by Griess assay. The mRNA and protein expressions of inducible nitric oxide synthase (iNOS) were detected by RT-PCR and Western blotting. The production of TNF-α, IL-1β, and IL-6 after treatment with ORPH was measured using ELISA assay. In addition, NF-κB levels were also investigated by Western blot. The results showed that ORPH enhanced the phagocytosis of macrophage, increased productions of TNF-α, IL-1β, IL-6, and NO in RAW 264.7 cells, and upregulated the mRNA and protein expression of iNOS. Besides, NF-κB, levels in RAW 264.7 cells were elevated after ORPH treatment. These findings suggested that ORPH might stimulate macrophage activities by activating the NF-κB pathway.

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Liang Zheng ◽  
Mengyue Wang ◽  
Ying Peng ◽  
Xiaobo Li

In this study, four polysaccharide fractions designated as RGP1, RGP2, RGP3, and RGP4 were isolated from red ginseng by DEAE-52 cellulose chromatography, and their macrophage immunomodulatory activities were investigated. The results revealed that the proliferation, NO production, and neutral red phagocytosis of RAW 264.7 macrophage cells in groups treated with RGP1 and RGP2 in vitro were increased significantly compared to RGP3 and RGP4. In addition, the level of TNF-α in RAW 264.7 cells was significantly increased in RGP1 and RGP2 groups. All the results consistently indicated that polysaccharide fractions RGP1 and RGP2 had strong macrophage immunomodulatory activities. Furthermore, RGP1 and RGP2 were purified by Sephadex G-100 column and RGP2 was further fractionated into a homogeneous fraction RGP2-1, with the molecular weight of 2.16 × 104 Da. The analysis of monosaccharide composition revealed that RGP1 was composed of arabinose, glucose, and galactose with a relative molecular ratio of 0.02 : 0.88 : 0.10. RGP2-1 was composed of rhamnose, arabinose, glucose, and galactose with a relative molecular ratio of 0.02 : 0.10 : 0.77 : 0.11. These results provided evidences that the neutral polysaccharide fractions RGP1 and RGP2 possessed significant immunomodulatory activity and could be explored as a promising natural immunomodulating agent applied in functional foods or medicines.


Separations ◽  
2021 ◽  
Vol 8 (9) ◽  
pp. 129
Author(s):  
Uoorakkottil Ilyas ◽  
Deepshikha P. Katare ◽  
Punnoth Poonkuzhi Naseef ◽  
Mohamed Saheer Kuruniyan ◽  
Muhammed Elayadeth-Meethal ◽  
...  

Phyllanthus species (Family Euphorbiaceae) has been used in traditional medicine of several countries as a cure for numerous diseases, including jaundice and hepatitis. This study is an attempt to evaluate the immunomodulatory activity of various fractions, column eluents of ethyl acetate fraction, and their polyphenols. Phyllanthus maderaspatensis were standardized using high-performance liquid chromatography to identify and quantify polyphenols, and purification of polyphenols was carried out using vacuum liquid chromatography. Subsequently, we tested various fractions, column eluents of ethyl acetate fraction, and polyphenols in vitro to assess their impact on nitric oxide (NO) production in LPS-stimulated mouse macrophage RAW 264.7 cells. The ethyl acetate fraction (100 μg mL−1) had a more significant stimulatory effect on LPS-stimulated NO production by the RAW 264.7 cells. We found that the ethyl acetate fraction contains a high amount of catechin, quercetin, ellagic acid kaempferol, and rutin, which are responsible for immunomodulation. The ethyl acetate fraction at concentrations of 25 and 50 μg mL−1 had a significant inhibitory effect and 100 μg mL−1 had a more significant stimulatory effect when compared with the LPS control. The percentage of inhibition by LPS control ranged from zero percentage, kaempferol ranged from 45.4% at 50 μg mL−1 to 41.88% at 100 μg mL−1, catechin ranged from 50% at 50 μg mL−1 to 35.28% at 100 μg mL−1, rutin ranged from 36.2% at 50 μg mL−1 to 47.44% at 100 μg mL−1, gallic acid ranged from 28.4% at 50 μg mL−1 to 50.9% at 100 μg mL−1, ellagic acid ranged from 45.12% at 50 μg mL−1 to 38.64% at 100 μg mL−1, and purified quercetin ranged from 26.2% at 50 μg mL−1to 45.48% at 100 μg mL−1. As NO plays an important role in the immune function, polyphenols’ treatment could modulate several aspects of host defense mechanisms owing to the stimulation of the inducible nitric oxide synthase.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2672
Author(s):  
Yang Zhou ◽  
Chunguo Qian ◽  
Depo Yang ◽  
Cailin Tang ◽  
Xinjun Xu ◽  
...  

Amomum Villosum Lour. (A. villosum) is a folk medicine that has been used for more than 1300 years. However, study of the polysaccharides of A. villosum is seriously neglected. The objectives of this study are to explore the structural characteristics of polysaccharides from A. villosum (AVPs) and their effects on immune cells. In this study, the acidic polysaccharides (AVPG-1 and AVPG-2) were isolated from AVPs and purified via anion exchange and gel filtration chromatography. The structural characteristics of the polysaccharides were characterized by methylation, HPSEC-MALLS-RID, HPLC, FT-IR, SEM, GC-MS and NMR techniques. AVPG-1 with a molecular weight of 514 kDa had the backbone of → 4)-α-d-Glcp-(1 → 3,4)-β-d-Glcp-(1 → 4)-α-d-Glcp-(1 →. AVPG-2 with a higher molecular weight (14800 kDa) comprised a backbone of → 4)-α-d-Glcp-(1 → 3,6)-β-d-Galp-(1 → 4)-α-d-Glcp-(1 →. RAW 264.7 cells were used to investigate the potential effect of AVPG-1 and AVPG-2 on macrophages, and lipopolysaccharide (LPS) was used as a positive control. The results from bioassays showed that AVPG-2 exhibited stronger immunomodulatory activity than AVPG-1. AVPG-2 significantly induced nitric oxide (NO) production as well as the release of interleukin (IL)-6 and tumor necrosis factor alpha (TNF-α), and upregulated phagocytic capacities of RAW 264.7 cells. Real-time PCR analysis revealed that AVPG-2 was able to turn the polarization of macrophages to the M1 direction. These results suggested that AVPs could be explored as potential immunomodulatory agents of the functional foods or complementary medicine.


2021 ◽  
Vol 9 (12) ◽  
pp. 2437
Author(s):  
Ayeon Kwon ◽  
Young-Seo Park

Much attention has been recently paid to the health benefits of synbiotics, a combination of probiotics and prebiotics. In this study, synbiotics were prepared by combining lactic acid bacteria with potential as probiotics and purified glucooligosaccharides, and their immunostimulatory activity was evaluated using RAW 264.7 macrophage cells. A lactic acid bacteria strain with high antioxidant activity, acid and bile salt tolerance, adhesion to Caco-2 cells, and nitric oxide (NO) production was selected as a potential probiotic strain. The selected strain, isolated from forsythia, was identified as Lactococcus lactis SG-030. The purified glucooligosaccharides produced from Weissella cibaria YRK005 were used as prebiotics. RAW 264.7 cells were treated with synbiotics in two ways. One way was a simultaneous treatment with lactic acid bacteria and glucooligosaccharides. The other way was to pre-culture the lactic acid bacteria with glucooligosaccharides followed by treatment with synbiotic culture broth or synbiotic culture supernatant. In both cases, synbiotics synergistically increased NO production in RAW 264.7 cells. In addition, synbiotics treatment increased the expression of tissue necrosis factor-α, interleukin (IL)-1β, IL-6, and inducible nitric oxide synthase genes. Synbiotics also increased the expression of P38, extracellular signal-regulated kinases, c-Jun N-terminal kinases, phosphoinositide 3-kinase, and Akt proteins. The results confirmed that the synbiotics prepared in this study exhibited synergistic immunostimulatory activity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Haidy A. Saleh ◽  
Eman Ramdan ◽  
Mohey M. Elmazar ◽  
Hassan M. E. Azzazy ◽  
Anwar Abdelnaser

AbstractDoxorubicin (DOX) chemotherapy is associated with the release of inflammatory cytokines from macrophages. This has been suggested to be, in part, due to DOX-mediated leakage of endotoxins from gut microflora, which activate Toll-like receptor 4 (TLR4) signaling in macrophages, causing severe inflammation. However, the direct function of DOX on macrophages is still unknown. In the present study, we tested the hypothesis that DOX alone is incapable of stimulating inflammatory response in macrophages. Then, we compared the anti-inflammatory effects of curcumin (CUR), resveratrol (RES) and sulforaphane (SFN) against lipopolysaccharide/interferon-gamma (LPS/IFN-γ)-mediated inflammation in the absence or presence of DOX. For this purpose, RAW 264.7 cells were stimulated with LPS/IFN-γ (10 ng/mL/10 U/mL) in the absence or presence of DOX (0.1 µM). Our results showed that DOX alone is incapable of stimulating an inflammatory response in RAW 264.7 macrophages. Furthermore, after 24 h of incubation with LPS/IFN-γ, a significant increase in tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and inducible nitric oxide synthase (iNOS) mRNA levels was observed. Similarly, nitric oxide (NO) production and TNF-α and IL-6 protein levels were significantly upregulated. Moreover, in LPS/IFN-γ-treated macrophages, the microRNAs (miRNAs) miR-146a, miR-155, and miR-21 were significantly overexpressed. Interestingly, upon testing CUR, RES, and SFN against LPS/IFN-γ-mediated inflammation, only SFN was able to significantly reverse the LPS/IFN-γ-mediated induction of iNOS, TNF-α and IL-6 and attenuate miR-146a and miR-155 levels. In conclusion, SFN, at the transcriptional and posttranscriptional levels, exhibits potent immunomodulatory action against LPS/IFN-γ-stimulated macrophages, which may indicate SFN as a potential treatment for DOX-associated inflammation.


2020 ◽  
Vol 8 ◽  
Author(s):  
Yury E. Tsvetkov ◽  
Ema Paulovičová ◽  
Lucia Paulovičová ◽  
Pavol Farkaš ◽  
Nikolay E. Nifantiev

Chitin, a polymer of β-(1→4)-linked N-acetyl-d-glucosamine, is one of the main polysaccharide components of the fungal cell wall. Its N-deacetylated form, chitosan, is enzymatically produced in the cell wall by chitin deacetylases. It exerts immunomodulative, anti-inflammatory, anti-cancer, anti-bacterial, and anti-fungal activities with various medical applications. To study the immunobiological properties of chitosan oligosaccharides, we synthesized a series of β-(1→4)-linked N-acetyl-d-glucosamine oligomers comprising 3, 5, and 7 monosaccharide units equipped with biotin tags. The key synthetic intermediate employed for oligosaccharide chain elongation, a disaccharide thioglycoside, was prepared by orthogonal glycosylation of a 4-OH thioglycoside acceptor with a glycosyl trichloroacetimidate bearing the temporary 4-O-tert-butyldimethylsilyl group. The use of silyl protection suppressed aglycon transfer and provided a high yield for the target disaccharide donor. Using synthesized chitosan oligomers, as well as previously obtained chitin counterparts, the immunobiological relationship between these synthetic oligosaccharides and RAW 264.7 cells was studied in vitro. Evaluation of cell proliferation, phagocytosis, respiratory burst, and Th1, Th2, Th17, and Treg polarized cytokine expression demonstrated effective immune responsiveness and immunomodulation in RAW 264.7 cells exposed to chitin- and chitosan-derived oligosaccharides. Macrophage reactivity was accompanied by significant inductive dose- and structure-dependent protective Th1 and Th17 polarization, which was greater with exposure to chitosan- rather than chitin-derived oligosaccharides. Moreover, no antiproliferative or cytotoxic effects were observed, even following prolonged 48 h exposure. The obtained results demonstrate the potent immunobiological activity of these synthetically prepared chito-oligosaccharides.


Molecules ◽  
2019 ◽  
Vol 24 (21) ◽  
pp. 3910 ◽  
Author(s):  
Min-Seon Kim ◽  
Jin-Soo Park ◽  
You Chul Chung ◽  
Sungchan Jang ◽  
Chang-Gu Hyun ◽  
...  

Biorenovation is a microbial enzyme-catalyzed structural modification of organic compounds with the potential benefits of reduced toxicity and improved biological properties relative to their precursor compounds. In this study, we synthesized a novel compound verified as formononetin 7-O-phosphate (FMP) from formononetin (FM) using microbial biotransformation. We further compared the anti-inflammatory properties of FMP to FM in lipopolysaccharide (LPS)-treated RAW264.7 macrophage cells. We observed that cell viabilities and inhibitory effects on LPS-induced nitric oxide (NO) production were greater in FMP-treated RAW 264.7 cells than in their FM-treated counterparts. In addition, FMP treatment suppressed the production of proinflammatory cytokines such as prostaglandin-E2 (PGE2), interleukin-6 (IL-6), and interleukin-1β (IL-1β) in a dose-dependent manner and concomitantly decreased the mRNA expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2). We also found that FMP exerted its anti-inflammatory effects through the downregulation of the extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and nuclear factor kappa B (NF-κB) signaling pathways. In conclusion, we generated a novel anti-inflammatory compound using biorenovation and demonstrated its efficacy in cell-based in vitro assays.


2007 ◽  
Vol 2 (6) ◽  
pp. 1934578X0700200 ◽  
Author(s):  
Liva Harinantenaina ◽  
Yoshinori Asakawa

The phytochemical investigation of eight Jungermaniales liverwort species: Bazzania decrescens, B. madagassa (Lepidoziaceae), Plagiochila barteri, P. terebrans (Plagiochilaceae), Isotachis aubertii (Isotachidaceae), Mastigophora diclados (Lepicoleaceae), Radula appressa (Radulaceae), and Thysananthus spathulistipus (Lejeuneaceae), collected from Madagascar, has been carried out to afford new and structurally interesting terpenoids and aromatic compounds. The biological activities of the isolated secondary metabolites were determined and the herbertene-type sesquiterpenoids were shown to have antibacterial activity. A new ent-clerodane diterpene from Thysananthus spathulistipus and bis-bibenzyls-type aromatic compounds exhibited strong inhibition of NO production in RAW 264.7 cells, while marchantin C produced moderate α-glucosidase inhibition. The chemosystematics of the studied species are discussed.


Foods ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 269 ◽  
Author(s):  
Su Cheol Baek ◽  
Dahae Lee ◽  
Mun Seok Jo ◽  
Kwang Ho Lee ◽  
Yong Hoon Lee ◽  
...  

Hippophae rhamnoides L. (Elaeagnaceae; commonly known as “sea buckthorn” and “vitamin tree”), is a spiny deciduous shrub whose fruit is used in foods and traditional medicines. The H. rhamnoides fruit (berry) is rich in vitamin C, with a level exceeding that found in lemons and oranges. H. rhamnoides berries are usually washed and pressed to create pomace and juice. Today, the powder of the aqueous extract of H. rhamnoides berries are sold as a functional food in many countries. As part of our ongoing effort to identify bioactive constituents from natural resources, we aimed to isolate and identify those from the fruits of H. rhamnoides. Phytochemical analysis of the extract of H. rhamnoides fruits led to the isolation and identification of six compounds, namely, a citric acid derivative (1), a phenolic (2), flavonoids (3 and 4), and megastigmane compounds (5 and 6). Treatment with compounds 1–6 did not have any impact on the cell viability of RAW 264.7 mouse macrophages. However, pretreatment with these compounds suppressed lipopolysaccharide (LPS)-induced NO production in RAW 264.7 mouse macrophages in a concentration-dependent manner. Among the isolated compounds, compound 1 was identified as the most active, with an IC50 of 39.76 ± 0.16 μM. This value was comparable to that of the NG-methyl-L-arginine acetate salt, a nitric oxide synthase inhibitor with an IC50 of 28.48 ± 0.05 μM. Western blot analysis demonstrated that compound 1 inhibited the LPS-induced expression of IKKα/β (IκB kinase alpha/beta), I-κBα (inhibitor of kappa B alpha), nuclear factor kappa-B (NF-κB) p65, iNOS (inducible nitric oxide synthase), and COX-2 (cyclooxygenase-2) in RAW 264.7 cells. Furthermore, LPS-stimulated cytokine production was detected using a sandwich enzyme-linked immunosorbent assay. Compound 1 decreased interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α) production in LPS-stimulated RAW 264.7 cells. In summary, the mechanism of action of 1 included the suppression of LPS-induced NO production in RAW 264.7 cells by inhibiting IKKα/β, I-κBα, NF-κB p65, iNOS, and COX-2, and the activities of IL-6 and TNF-α.


Sign in / Sign up

Export Citation Format

Share Document