scholarly journals Optimization of the Design of Pre-Signal System Using Improved Cellular Automaton

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Yan Li ◽  
Ke Li ◽  
Siran Tao ◽  
Xia Wan ◽  
Kuanmin Chen

The pre-signal system can improve the efficiency of intersection approach under rational design. One of the main obstacles in optimizing the design of pre-signal system is that driving behaviors in the sorting area cannot be well evaluated. The NaSch model was modified by considering slow probability, turning-deceleration rules, and lane changing rules. It was calibrated with field observed data to explore the interactions among design parameters. The simulation results of the proposed model indicate that the length of sorting area, traffic demand, signal timing, and lane allocation are the most important influence factors. The recommendations of these design parameters are demonstrated. The findings of this paper can be foundations for the design of pre-signal system and show promising improvement in traffic mobility.

2017 ◽  
Vol 29 (2) ◽  
pp. 185-192 ◽  
Author(s):  
Jiangfeng Wang ◽  
Chang Gao ◽  
Zhouyuan Zhu ◽  
Xuedong Yan

Considering the impact of drivers’ psychology and behaviour, a multi-lane changing model coupling driving intention and inclination is proposed by introducing two quantitative indices of intention: strength of lane changing and risk factor. According to the psychological and behavioural characteristics of aggressive drivers and conservative drivers, the safety conditions for lane changing are designed respectively. The numerical simulations show that the proposed model is suitable for describing the traffic flow with frequent lane changing, which is more consistent with the driving behaviour of drivers in China. Compared with symmetric two-lane cellular automata (STCA) model, the proposed model can improve the average speed of vehicles by 1.04% under different traffic demands when aggressive drivers are in a higher proportion (the threshold of risk factor is 0.4). When the risk factor increases, the average speed shows the polarization phenomenon with the average speed slowing down in big traffic demand. The proposed model can reflect the relationship among density, flow, and speed, and the risk factor has a significant impact on density and flow.


2018 ◽  
Vol 29 (07) ◽  
pp. 1850056 ◽  
Author(s):  
H. B. Zhu ◽  
G. Y. Chen ◽  
H. Lin ◽  
Y. J. Zhou

A modified cellular automata traffic model is proposed to simulate four-lane traffic flow, in which drivers are classified into aggressive drivers and cautious drivers and the anticipative velocity of the adjacent vehicles is considered. Analysis from the vehicles’ evolution pattern indicates that vehicles driven by the aggressive drivers are more powerful in behaviors of lane-changing and car-following. The model is refined by using the small cell of one meter long in order to simulate the traffic flow meticulously and realistically. The results indicate that the lane-changing maneuver exhibits different property as the density varies, and it does have a significant impact on the characteristics of the surrounding traffic flow due to their interfering effects on the following vehicles. Furthermore, the phenomenon of high-speed car-following is exhibited, and the results coincide with the empirical data very well. It is shown that the proposed model is reasonable and can partially reflect the real traffic.


2021 ◽  
Vol 13 (5) ◽  
pp. 123
Author(s):  
Yanjun Shi ◽  
Hao Yu ◽  
Yijia Guo ◽  
Zhiheng Yuan

The merging area of the freeway is an area with a high incidence of traffic accidents. With the development of connected and automated vehicles (CAVs) and V2X technology, the traffic efficiency of freeway ramp areas has been significantly improved. However, current research mostly focuses on merging a single mainline lane and ramp, and there are few cases of multiple lanes. In this paper, we present a collaborative merging model with a rule-based lane-changing strategy in a V2X environment. First, the vehicle selects the appropriate gap to change lanes safely without affecting other vehicles. Meanwhile, we established a linear time discrete model to optimize the trajectory of vehicles in real-time. Finally, the proposed model and strategy were implemented in SUMO and Python. The simulation results showed that the merging model we proposed based on the lane-changing strategy had good performance in terms of the number of stops, average delay, and average speed.


Author(s):  
Adam Barylski ◽  
Mariusz Deja

Silicon wafers are the most widely used substrates for fabricating integrated circuits. A sequence of processes is needed to turn a silicon ingot into silicon wafers. One of the processes is flattening by lapping or by grinding to achieve a high degree of flatness and parallelism of the wafer [1, 2, 3]. Lapping can effectively remove or reduce the waviness induced by preceding operations [2, 4]. The main aim of this paper is to compare the simulation results with lapping experimental data obtained from the Polish producer of silicon wafers, the company Cemat Silicon from Warsaw (www.cematsil.com). Proposed model is going to be implemented by this company for the tool wear prediction. Proposed model can be applied for lapping or grinding with single or double-disc lapping kinematics [5, 6, 7]. Geometrical and kinematical relations with the simulations are presented in the work. Generated results for given workpiece diameter and for different kinematical parameters are studied using models programmed in the Matlab environment.


Author(s):  
Ameya K. Naik ◽  
Raghunath S. Holambe

An outline is presented for construction of wavelet filters with compact support. Our approach does not require any extensive simulations for obtaining the values of design variables like other methods. A unified framework is proposed for designing halfband polynomials with varying vanishing moments. Optimum filter pairs can then be generated by factorization of the halfband polynomial. Although these optimum wavelets have characteristics close to that of CDF 9/7 (Cohen-Daubechies-Feauveau), a compact support may not be guaranteed. Subsequently, we show that by proper choice of design parameters finite wordlength wavelet construction can be achieved. These hardware friendly wavelets are analyzed for their possible applications in image compression and feature extraction. Simulation results show that the designed wavelets give better performances as compared to standard wavelets. Moreover, the designed wavelets can be implemented with significantly reduced hardware as compared to the existing wavelets.


2021 ◽  
Vol 316 ◽  
pp. 661-666
Author(s):  
Nataliya V. Mokrova

Current cobalt processing practices are described. This article discusses the advantages of the group argument accounting method for mathematical modeling of the leaching process of cobalt solutions. Identification of the mathematical model of the cascade of reactors of cobalt-producing is presented. Group method of data handling is allowing: to eliminate the need to calculate quantities of chemical kinetics; to get the opportunity to take into account the results of mixed experiments; to exclude the influence of random interference on the simulation results. The proposed model confirms the capabilities of the group method of data handling for describing multistage processes.


Author(s):  
Obaidur Rahman Mohammed ◽  
D. V. Suresh ◽  
Hamid M. Lankarani

Abstract The increase in public transportation in the last decade has resulted in a larger pedestrian population and hence a larger number of pedestrian collisions. In the past, car-pedestrian accident prevention had been a challenge for automotive and transport safety members. Recent reports in car-pedestrian accidents have influenced many improvements to prioritize pedestrian protection for automotive industries. The number of pedestrian fatalities in U.S has raised in last decade proportionally, Car manufacturers, and transport investigation teams are implementing new product designs and adding new development methods to reduce the risk of pedestrian collisions. In this study, adult headform and upper legform is tested with a finite element vehicle model to examine the simulation results and injury behavior during impact. All finite element simulation tests are produced under Euro-NCAP Committee regulations. Finite element models are configured as per the regulation’s and testing criteria. Both upper legform impactor and adult headform finite simulation results are tested with assessing criteria limits. Finite simulation tests are carried on the LS-DYNA – Code platform. This comparative study between sedan and pickup finite vehicle models gives an injury risk prediction of pedestrian safety and assesses design parameters of automotive industries.


Author(s):  
Dilip Prasad

Windmilling requirements for aircraft engines often define propulsion and airframe design parameters. The present study is focused is on two key quantities of interest during windmill operation: fan rotational speed and stage losses. A model for the rotor exit flow is developed, that serves to bring out a similarity parameter for the fan rotational speed. Furthermore, the model shows that the spanwise flow profiles are independent of the throughflow, being determined solely by the configuration geometry. Interrogation of previous numerical simulations verifies the self-similar nature of the flow. The analysis also demonstrates that the vane inlet dynamic pressure is the appropriate scale for the stagnation pressure loss across the rotor and splitter. Examination of the simulation results for the stator reveals that the flow blockage resulting from the severely negative incidence that occurs at windmill remains constant across a wide range of mass flow rates. For a given throughflow rate, the velocity scale is then shown to be that associated with the unblocked vane exit area, leading naturally to the definition of a dynamic pressure scale for the stator stagnation pressure loss. The proposed scaling procedures for the component losses are applied to the flow configuration of Prasad and Lord (2010). Comparison of simulation results for the rotor-splitter and stator losses determined using these procedures indicates very good agreement. Analogous to the loss scaling, a procedure based on the fan speed similarity parameter is developed to determine the windmill rotational speed and is also found to be in good agreement with engine data. Thus, despite their simplicity, the methods developed here possess sufficient fidelity to be employed in design prediction models for aircraft propulsion systems.


NANO ◽  
2009 ◽  
Vol 04 (03) ◽  
pp. 171-176 ◽  
Author(s):  
DAVOOD FATHI ◽  
BEHJAT FOROUZANDEH

This paper introduces a new technique for analyzing the behavior of global interconnects in FPGAs, for nanoscale technologies. Using this new enhanced modeling method, new enhanced accurate expressions for calculating the propagation delay of global interconnects in nano-FPGAs have been derived. In order to verify the proposed model, we have performed the delay simulations in 45 nm, 65 nm, 90 nm, and 130 nm technology nodes, with our modeling method and the conventional Pi-model technique. Then, the results obtained from these two methods have been compared with HSPICE simulation results. The obtained results show a better match in the propagation delay computations for global interconnects between our proposed model and HSPICE simulations, with respect to the conventional techniques such as Pi-model. According to the obtained results, the difference between our model and HSPICE simulations in the mentioned technology nodes is (0.29–22.92)%, whereas this difference is (11.13–38.29)% for another model.


2018 ◽  
Vol 140 (12) ◽  
Author(s):  
Dilip Prasad

Windmilling requirements for aircraft engines often define propulsion and airframe design parameters. The present study is focused on two key quantities of interest during windmill operation: fan rotational speed and stage losses. A model for the rotor exit flow is developed that serves to bring out a similarity parameter for the fan rotational speed. Furthermore, the model shows that the spanwise flow profiles are independent of the throughflow, being determined solely by the configuration geometry. Interrogation of previous numerical simulations verifies the self-similar nature of the flow. The analysis also demonstrates that the vane inlet dynamic pressure is the appropriate scale for the stagnation pressure loss across the rotor and splitter. Examination of the simulation results for the stator reveals that the flow blockage resulting from the severely negative incidence that occurs at windmill remains constant across a wide range of mass flow rates. For a given throughflow rate, the velocity scale is then shown to be that associated with the unblocked vane exit area, leading naturally to the definition of a dynamic pressure scale for the stator stagnation pressure loss. The proposed scaling procedures for the component losses are applied to the flow configuration of Prasad and Lord (2010). Comparison of simulation results for the rotor-splitter and stator losses determined using these procedures indicates very good agreement. Analogous to the loss scaling, a procedure based on the fan speed similarity parameter is developed to determine the windmill rotational speed and is also found to be in good agreement with engine data. Thus, despite their simplicity, the methods developed here possess sufficient fidelity to be employed in design prediction models for aircraft propulsion systems.


Sign in / Sign up

Export Citation Format

Share Document