scholarly journals The Effect of Thickness of Aluminium Films on Optical Reflectance

2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Robert Lugolole ◽  
Sam Kinyera Obwoya

In Uganda and Africa at large, up to 90% of the total energy used for food preparation and water pasteurization is from fossil fuels particularly firewood and kerosene which pollute the environment, yet there is abundant solar energy throughout the year, which could also be used. Uganda is abundantly rich in clay minerals such as ball clay, kaolin, feldspar, and quartz from which ceramic substrates were developed. Aluminium films of different thicknesses were deposited on different substrates in the diffusion pump microprocessor vacuum coater (Edwards AUTO 306). The optical reflectance of the aluminium films was obtained using a spectrophotometer (SolidSpec-3700/DUV-UV-VIS-NIR) at various wave lengths. The analysis of the results of the study revealed that the optical reflectance of the aluminium films was above 50% and increased with increasing film thickness and wavelength. Thus, this method can be used to produce reflector systems in the technology of solar cooking and other appliances which use solar energy.

MRS Bulletin ◽  
1993 ◽  
Vol 18 (10) ◽  
pp. 18-25 ◽  
Author(s):  
Wim C. Sinke

The term “solar energy” refers to a wide variety of techniques for using the energy available as sunlight. Well-known examples are active and passive thermal solar energy and photovoltaic solar energy but, strictly speaking, hydropower, wind energy, and biomass are also forms of solar energy. Today, only hydropower is used in significant quantities, covering approximately 6% of the world's energy demand. Traditional use of biomass, mainly in developing countries, accounts for more than 10% of the total energy consumption, but is sometimes left out of statistics because it falls outside the category of organized and commercial use.The global potential for solar energy is huge, since the amount of energy that reaches the earth's surface every year exceeds the total energy consumption by roughly a factor of 10,000. There are, however, various barriers to the large-scale use of solar energy technologies. Most technologies have in common that the power density of the generator is low; in other words, one needs large areas to generate significant amounts of energy. This is especially true for biomass, with typical conversion efficiencies (solar energy to chemical energy) of 1% or less. Further, many solar energy technologies have proved technically feasible, but have yet to be proved economically feasible. Last, but not least, the large-scale use of solar energy requires substantial modification of our global energy supply system, which is based largely on fossil fuels.


Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 931
Author(s):  
Yin Xu ◽  
Giovanni Zangari

Electromagnetic light from the Sun is the largest source, and the cleanest energy available to us; extensive efforts have been dedicated to developing science and engineering solutions in order to avoid the use of fossil fuels. Solar energy transforms photons into electricity via the photovoltaic effect, generating about 20 GW of energy in the USA in 2020, sufficient to power about 17 million households. However, sunlight is erratic, and technologies to store electric energy storage are unwieldy and relatively expensive. A better solution to store energy and to deliver this energy on demand is storage in chemical bonds: synthesizing fuels such as H2, methane, ethanol, and other chemical species. In this review paper we focus on titania (TiO2) nanotubes grown through electrochemical anodization and various modifications made to them to enhance conversion efficiency; these semiconductors will be used to implement the synthesis of H2 through water splitting. This document reviews selected research efforts on TiO2 that are ongoing in our group in the context of the current efforts worldwide. In addition, this manuscript is enriched by discussing the latest novelties in this field.


RSC Advances ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 87-113
Author(s):  
Rami J. Batrice ◽  
John C. Gordon

Solar energy has been used for decades for the direct production of electricity in various industries and devices. However, harnessing and storing this energy in the form of chemical bonds has emerged as a promising alternative to fossil fuels.


2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Huang Huanhai

The potential crisis of energy and the deterioration of ecological environment make the world's cumbersomedevelopment of renewable energy including new energy, including solar energy. Traditional energy in the coal, oil andnatural gas are evolved from ancient fossils, it is collectively referred to as fossil fuels. As the world's energy needscontinue to increase, fossil fuels will also be depleted, it is necessary to fi nd a new energy to replace the traditionalenergy. Solar energy is a clean renewable energy with mineral energy incomparable superiority. Modern society shouldbe a conservation-oriented society, and social life should also be a life-saving energy. At the same time, Premier WenJiabao also proposed on June 30, 2005 and stressed the need to speed up the construction of a conservation-orientedsociety. And solar energy as an inexhaustible new environmentally friendly energy has become the world's energyresearch work in the world an important issue. Is the world in the economic situation to take a simpler, economical,environmentally friendly and reliable building heating and heating energy-saving measures. This paper summarizes thecurrent global energy status, indicating the importance of solar power and prospects. Details of the various solar powergeneration methods and their advantages, and made a comparison of this power generation parameters. At the sametime pointed out that the diffi culties faced by solar power and solutions, as well as China's solar power of the favorableconditions and diffi culties. The future of China's solar energy made a prospect.


Author(s):  
Ademola A. Adenle

Energy was not stated as one of the millennium development goals (MDGs) but played an indirect role in helping meet the MDGs especially in the areas of housing, health, education, and poverty reduction in Africa. In contrast, the United Nations’ 2030 agenda includes 17 sustainable development goals (SDGs), one of which is devoted to energy. SDG7 seeks to ensure “access to affordable, reliable, sustainable, and modern energy for all,” thereby creating a vital role for the energy sector to join in the task of achieving SDGs. Renewable energy including solar energy will play a significant role in improving energy security in Africa and diversifying the energy mix by reducing reliance on fossil fuels. This chapter examines the advantages of solar technologies in the context of social, economic, and environment benefits using case studies from Kenya and South Africa. This chapter also examines some of the key challenges that are associated with the application of solar energy technologies in these countries. Finally, the chapter discusses how solar energy technologies can help meet SDGs and summarizes policy and programs targeting the promotion of solar energy technologies for the implementation of SDGs.


Nanoscale ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 2507-2514 ◽  
Author(s):  
Yipeng Bao ◽  
Jin Wang ◽  
Qi Wang ◽  
Xiaofeng Cui ◽  
Ran Long ◽  
...  

Harvesting solar energy to convert carbon dioxide (CO2) into fossil fuels shows great promise to solve the current global problems of energy crisis and climate change.


2014 ◽  
Vol 699 ◽  
pp. 9-14
Author(s):  
Zulkifli Mohd Rosli ◽  
Nur Hamizah Ahmad Rusli ◽  
Jariah Mohamad Juoi ◽  
Mazidah Zainudi

This research aims to determine the effect of ceramic substrates surface roughness on the deposition of silver-titania (AgTiO2) coating. The ceramic substrates were prepared from three batch mixture of waste glass namely transparent glass (99 wt. %): carbon black (1 wt. %), green glass (85 wt. %): ball clay (15 wt. %) and transparent glass (85 wt. %): ball clay (15 wt. %) deposited with AgTiO2 using sol gel dip coating method. Ti and Ag phases have been identified via glancing angle X-Ray diffraction analysis (GAXRD). The thickness and morphology of coatings were characterized using Scanning Electron Microscopy (SEM). Analyses conducted have confirmed that AgTiO2 coating layers have been successfully deposited into various types of selected ceramic substrates. Microstructure analysis shows that coatings deposited on ceramic substrate with a moderate surface roughness of 2.13 (green glass: ball clay) produced the most homogeneous surface and uniform thickness.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1536 ◽  
Author(s):  
Jun Ling ◽  
Xulei Zhang ◽  
Ting Mao ◽  
Lei Li ◽  
Shilin Wang ◽  
...  

CdTe thin films have been prepared by electrochemical deposition. The morphological, structural, and optical properties of CdTe thin films deposited with different deposition time were investigated, and the influence of film thickness on the photoelectric characteristics of CdTe thin films was studied. At the deposition time of 1.5 h, CdTe thin films had good optical properties and the photocurrent reached 20 μAcm−2. Furthermore, the Pt/CdS/CdTe/FTO structure was prepared to improve its PEC stability and the photocurrent of 240 μAcm−2 had been achieved.


2019 ◽  
Vol 66 (2) ◽  
pp. 99-120
Author(s):  
Wilmer Emilio García Moreno ◽  
Andressa Ullmann Duarte ◽  
Litiéle dos Santos ◽  
Rogério Vescia Lourega

AbstractThe photovoltaic technologies have been developed year by year in different countries; however, there are some countries where this kind of energy is being born, such as the Brazilian case. In this paper, some important parameters are analysed and applied to different solar cell materials, identifying that if the fossil fuels were substituted by solar cells, it would reduce the CO2 emissions by 93.2%. In addition, it is shown that the efficiency of solar cells is not as farther as it could be thought from coal thermoelectrical plants in Brazil and the cost of energy using solar cells could be as good as these thermoelectrical plants. Finally, the potentiality of Brazilian territory to implant this technology is presented, identifying that with the use of 0.2% of the territory, the energy demand could be supplied.


Sign in / Sign up

Export Citation Format

Share Document