scholarly journals Using the Promise of Sonodynamic Therapy in the Clinical Setting against Disseminated Cancers

2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Matthew Trendowski

Sonodynamic therapy (SDT) is a form of ultrasound therapy in which specialized chemotherapeutic agents known as sonosensitizers are administered to increase the efficacy of ultrasound-mediated preferential damage of neoplastic cells. Multiple in vitro and in vivo studies have indicated that SDT has the ability to exhibit profound physical and chemical changes on cellular structure. As supportive as the data have been, assessment of this method at the clinical level has been limited to only solid tumors. Although SDT has shown efficacy against multiple adherent neoplastic cell lines, it has also shown particular promise with leukemia-derived cell lines. Potential procedures to administer SDT to leukemia patients are heating the appendages as ultrasound is applied to these areas (Heat and Treat), using an ultrasound probe to scan the body for malignant growths (Target and Destroy), and extracorporeal blood sonication (EBS) through dialysis. Each method offers a unique set of benefits and concerns that will need to be evaluated in preclinical mammalian models of malignancy before clinical examination can be considered.

2015 ◽  
Vol 49 (2) ◽  
pp. 147-154 ◽  
Author(s):  
Roberto Girelli ◽  
Simona Prejanò ◽  
Ivana Cataldo ◽  
Vincenzo Corbo ◽  
Lucia Martini ◽  
...  

Abstract Background. Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease generally refractory to standard chemotherapeutic agents; therefore improvements in anticancer therapies are mandatory. A major determinant of therapeutic resistance in PDAC is the poor drug delivery to neoplastic cells, mainly due to an extensive fibrotic reaction. Electroporation can be used in vivo to increase cancer cells’ local uptake of chemotherapeutics (electrochemotherapy, ECT), thus leading to an enhanced tumour response rate. In the present study, we evaluated the in vivo effects of reversible electroporation in normal pancreas in a rabbit experimental model. We also tested the effect of electroporation on pancreatic cancer cell lines in order to evaluate their increased sensitivity to chemotherapeutic agents. Materials and methods. The application in vivo of the European Standard Operating Procedure of Electrochemotherapy (ESOPE) pulse protocol (1000 V/cm, 8 pulses, 100 μs, 5 KHz) was tested on the pancreas of normal New Zealand White Rabbits and short and long-term toxicity were assessed. PANC1 and MiaPaCa2 cell lines were tested for in vitro electrochemotherapy experiments with and without electroporation. Levels of cell permeabilization were determined by flow cytometry, whereas cell viability and drug (cisplatin and bleomycin) sensitivity of pulsed cells were measured by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay. Results. In healthy rabbits, neither systemic nor local toxic effects due to the electroporation procedure were observed, demonstrating the safety of the optimized electric parameters in the treatment of the pancreas in vivo. In parallel, we established an optimized protocol for ECT in vitro that determined an enhanced anti-cancer effect of bleomycin and cisplatin with respect to treatment without electroporation. Conclusions. Our data suggest that electroporation is a safe procedure in the treatment of PDAC because it does not affect normal pancreatic parenchyma, but has a potentiating effect on cytotoxicity of bleomycin in pancreatic tumour cell lines. Therefore, ECT could be considered as a valid alternative for the local control of non-resectable pancreatic cancer.


2015 ◽  
Vol 66 (2) ◽  
pp. 97-108 ◽  
Author(s):  
Veno Kononenko ◽  
Mojca Narat ◽  
Damjana Drobne

Abstract When nanoparticles enter the body, their interactions with cells are almost unavoidable. Unintended nanoparticle interaction with immune cells may elicit a molecular response that can have toxic effects and lead to greater susceptibility to infectious diseases, autoimmune disorders, and cancer development. As evidenced by several studies, nanoparticle interactions with biological systems can stimulate inflammatory or allergic reactions and activate the complement system. Nanoparticles can also stimulate immune response by acting as adjuvants or as haptens. Immunosuppressive effects have also been reported. This article gives a brief review of in vitro and in vivo research evidencing stimulatory or suppressive effects of nanoparticles on the immune system of mammals. In order to ensure safe use of nanosized particles, future research should focus on how their physical and chemical properties influence their behaviour in the biological environment, as they not only greatly affect nanoparticle-immune system interactions but can also interfere with experimental assays


Author(s):  
Xiaodong Yang ◽  
Anne Steino ◽  
Jeffrey Bacha ◽  
Dennis Brown ◽  
Sabine Mueller

Despite decades of trials, the prognosis for diffuse intrinsic pontine gliomas (DIPG) remains dismal. DIPG is inoperable and standard treatment is radiation alone, as the addition of chemotherapeutic agents, such as temozolomide, have not improved survival. In addition to inherent chemoresistance, treatment of DIPG is impeded by an intact blood-brain barrier (BBB). VAL-083 is a structurally unique bi-functional DNA-targeting agent that readily crosses the BBB. VAL-083 forms interstrand DNA crosslinks at N7-guanine, resulting in DNA double-strand breaks (DSB), S/G2-phase cell-cycle arrest, and ultimately cancer cell death. We have previously demonstrated that VAL-083 is able to overcome temozolomide-resistance in vitro and in vivo, and that its cytotoxicity is independent of the DNA-repair enzyme O6-methylguanine DNA-methyltransferase (MGMT). MGMT is almost universally expressed in DIPG and its expression is strongly correlated with temozolomide-resistance. VAL-083’s distinct mechanism-of-action suggests the potential for combination with inhibitors of DNA DSB repair or S/G2 cell-cycle progression (e.g. Wee1 inhibitor AZD1775). Here, we investigated the effects of VAL-083 in combination with radiation, AZD1775 or irinotecan (topoisomerase inhibitor) in three DIPG cell-lines: SF10693 (H3.1), SF8628 (H3.3) and NEM157 (H3.3). VAL-083 showed activity at low uM-concentration in all three cell-lines. In addition, VAL-083 showed synergy with AZD1775 in all three cell-lines. Combined with its ability to cross the BBB, accumulate in brain tumor tissue and overcome MGMT-related chemoresistance, these results suggest VAL-083 as a potentially attractive treatment option for DIPG as single agent or in combination with AZD1775. Combination studies with radiation are ongoing and will be presented at the meeting.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Matthias Miederer ◽  
Stefanie Pektor ◽  
Isabelle Miederer ◽  
Nicole Bausbacher ◽  
Isabell Sofia Keil ◽  
...  

Abstract Background RNA-based vaccination strategies tailoring immune response to specific reactions have become an important pillar for a broad range of applications. Recently, the use of lipid-based nanoparticles opened the possibility to deliver RNA to specific sites within the body, overcoming the limitation of rapid degradation in the bloodstream. Here, we have investigated whether small animal PET/MRI can be employed to image the biodistribution of RNA-encoded protein. For this purpose, a reporter RNA coding for the sodium-iodide-symporter (NIS) was in vitro transcribed in cell lines and evaluated for expression. RNA-lipoplex nanoparticles were then assembled by complexing RNA with liposomes at different charge ratios, and functional NIS protein translation was imaged and quantified in vivo and ex vivo by Iodine-124 PET upon intravenous administration in mice. Results NIS expression was detected on the membrane of two cell lines as early as 6 h after transfection and gradually decreased over 48 h. In vivo and ex vivo PET/MRI of anionic spleen-targeting or cationic lung-targeting NIS-RNA lipoplexes revealed a visually detectable rapid increase of Iodine-124 uptake in the spleen or lung compared to control-RNA-lipoplexes, respectively, with minimal background in other organs except from thyroid, stomach and salivary gland. Conclusions The strong organ selectivity and high target-to-background acquisition of NIS-RNA lipoplexes indicate the feasibility of small animal PET/MRI to quantify organ-specific delivery of RNA.


2021 ◽  
Vol 11 ◽  
Author(s):  
Laurence C. Cheung ◽  
Rebecca de Kraa ◽  
Joyce Oommen ◽  
Grace-Alyssa Chua ◽  
Sajla Singh ◽  
...  

BackgroundInfants with KMT2A-rearranged B-cell precursor acute lymphoblastic leukemia (ALL) have poor outcomes. There is an urgent need to identify novel agents to improve survival. Proteasome inhibition has emerged as a promising therapeutic strategy for several hematological malignancies. The aim of this study was to determine the preclinical efficacy of the selective proteasome inhibitor carfilzomib, for infants with KMT2A-rearranged ALL.MethodsEight infant ALL cell lines were extensively characterized for immunophenotypic and cytogenetic features. In vitro cytotoxicity to carfilzomib was assessed using a modified Alamar Blue assay with cells in logarithmic growth. The Bliss Independence model was applied to determine synergy between carfilzomib and the nine conventional chemotherapeutic agents used to treat infants with ALL. Established xenograft models were used to identify the maximal tolerated dose of carfilzomib and determine in vivo efficacy.ResultsCarfilzomib demonstrated low IC50 concentrations within the nanomolar range (6.0–15.8 nm) across the panel of cell lines. Combination drug testing indicated in vitro synergy between carfilzomib and several conventional chemotherapeutic agents including vincristine, daunorubicin, dexamethasone, L-asparaginase, and 4-hydroperoxycyclophosphamide. In vivo assessment did not lead to a survival advantage for either carfilzomib monotherapy, when used to treat both low or high disease burden, or for carfilzomib in combination with multi-agent induction chemotherapy comprising of vincristine, dexamethasone, and L-asparaginase.ConclusionsOur study highlights that in vitro efficacy does not necessarily translate to benefit in vivo and emphasizes the importance of in vivo validation prior to suggesting an agent for clinical use. Whilst proteasome inhibitors have an important role to play in several hematological malignancies, our findings guard against prioritization of carfilzomib for treatment of KMT2A-rearranged infant ALL in the clinical setting.


2019 ◽  
Vol 10 (10) ◽  
Author(s):  
Jacopo Gavini ◽  
Noëlle Dommann ◽  
Manuel O. Jakob ◽  
Adrian Keogh ◽  
Laure C. Bouchez ◽  
...  

Abstract Lysosomal sequestration of anti-cancer compounds reduces drug availability at intracellular target sites, thereby limiting drug-sensitivity and inducing chemoresistance. For hepatocellular carcinoma (HCC), sorafenib (SF) is the first line systemic treatment, as well as a simultaneous activator of autophagy-induced drug resistance. The purpose of this study is to elucidate how combination therapy with the FDA-approved photosensitizer verteporfin (VP) can potentiate the antitumor effect of SF, overcoming its acquired resistance mechanisms. HCC cell lines and patient-derived in vitro and in vivo preclinical models were used to identify the molecular mechanism of action of VP alone and in combination with SF. We demonstrate that SF is lysosomotropic and increases the total number of lysosomes in HCC cells and patient-derived xenograft model. Contrary to the effect on lysosomal stability by SF, VP is not only sequestered in lysosomes, but induces lysosomal pH alkalinization, lysosomal membrane permeabilization (LMP) and tumor-selective proteotoxicity. In combination, VP-induced LMP potentiates the antitumor effect of SF, further decreasing tumor proliferation and progression in HCC cell lines and patient-derived samples in vitro and in vivo. Our data suggest that combination of lysosome-targeting compounds, such as VP, in combination with already approved chemotherapeutic agents could open a new avenue to overcome chemo-insensitivity caused by passive lysosomal sequestration of anti-cancer drugs in the context of HCC.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Yongping Liu ◽  
Yang Ling ◽  
Wenjing Hu ◽  
Li Xie ◽  
Lixia Yu ◽  
...  

The herb medicine formula “Chong Lou Fu Fang” (CLFF) has efficacy in inhibiting the proliferation of human gastric cancerin vitroandin vivo. To explore the potentially useful combination of CLFF with chemotherapeutic agents commonly used in gastric cancer therapy, we assess the interaction between CLFF and these chemotherapeutic agents in both SGC-7901 cell lines and BGC-823 cell lines using a median effect analysis and apoptosis analysis, and we also investigate the influence of CLFF on chemotherapeutic agent-associated gene expression. The synergistic analysis indicated that CLFF had a synergistic effect on the cytotoxicity of 5-fluorouracil (5-FU) in a relative broad dose inhibition range (20–95% fraction affected in SGC-7901cell lines and 5–65% fraction affected in BGC-823 cell lines), while the synergistic interaction between CLFF and oxaliplatin or docetaxel only existed in a low dose inhibition range (≤50% fraction affected in both cell lines). Combination of CLFF and chemotherapeutic agents could also induce apoptosis in a synergistic manner. After 24 h, CLFF alone or CLFF combination with chemotherapeutic agents could significantly suppress the levels of expression of chemotherapeutic agent resistance related genes in gastric cancer cells. Our findings indicate that there are useful synergistic interactions between CLFF and chemotherapeutic agents in gastric cancer cells, and the possible mechanisms might be partially due to the down-regulation of chemotherapeutic agent resistance related genes and the synergistic apoptotic effect.


1992 ◽  
Vol 77 (3) ◽  
pp. 451-456 ◽  
Author(s):  
T. Ken Yoshida ◽  
Keiji Shimizu ◽  
Athanasios Koulousakis ◽  
Volker Sturm ◽  
Emile Beuls

✓ Two variant cells lines resistant to the nitrosourea derivative ACNU ((1-4-amino-2-methyl-5-pyrimidinyl)methyl-3-(2-chloroethyl)-3-nitrosourea hydrochloride), namely C6/ACNU and 9L/ACNU, were selected in vivo from rat brain tumors. Stable resistance to ACNU proved to be a characteristic of these cell lines, whether they were grown in vivo or in vitro. These cell lines exhibited a different pattern of cross-resistance to a wide range of chemotherapeutic agents with dissimilar chemical structures and mechanisms of action as compared with that of other ACNU-resistant cell lines established in vitro. Distinct cross-resistance was observed in both the C6/ACNU and 9L/ACNU cell lines to chloroethyl-nitrosoureas such as BCNU (carmustine), CCNU (lomustine), and methyl CCNU and, additionally, to vincristine, vinblastine, Adriamycin (doxorubicin), and arabinosylcytosine, but not to bleomycin, methotrexate, c/s-platinum, and 5-fluorouracil. This might point to a multifactorial mechanism of drug resistance in ACNU-resistant cell lines derived from rat C6 and 9L brain tumor cells.


2009 ◽  
Vol 27 (15_suppl) ◽  
pp. 6079-6079
Author(s):  
H. Hatakeyama ◽  
J. Parker ◽  
D. Wheeler ◽  
P. Harari ◽  
S. Levy ◽  
...  

6079 Background: Insulin-like growth factor 1 receptor (IGF1R) is highly expressed in head and neck squamous cell carcinoma (HNSCC) and IGF1R inhibitors have been shown to modulate sensitivity to selected chemotherapeutic agents and radiation. The combination effects of an IGF1R inhibitor, MK-0646, with cetuximab or cytotoxic agents that are commonly used in the treatment of recurrent and/or metastatic HNSCC were examined in cetuximab resistant and sensitive HNSCC cell lines. Methods: The cell lines, SCC1 and its cetuximab-resistant clone 1Cc8, were treated with MK-0646, cetuximab or methotrexate, and a combination of MK-0646 and each anti-cancer drug (MK-0646 was supplied by Merck & Co., Inc.). The effect of treatments on cell proliferation and anti-tumor activity was determined using MTS assay in vitro and in vivo using mouse xenografts generated from the cell lines. Overall changes in the gene and protein expressions with the treatments were determined by DNA microarrays and western blots. Results: The IGF1R inhibitor, MK-0646, showed high-sensitivity in vitro xenograft model in SCC1 as monotherapy and increased sensitivity to cetuximab in SCC1 and to methotrexate in 1Cc8 in combination. However, MK-0646 did not inhibit cell proliferation in vitro and in vivo in 1Cc8. The gene expression array and western blot analyses showed that MK-0646 decreased expression of AKT and dihydrofolate reductase (DHFR), a target of methotrexate. Increased expressions of AKT and DHFR have been shown to associate with cetuximab and methotrexate resistance as well as radiation resistance. Conclusions: The development of tolerance in response to the IGF1R inhibitor and cetuximab is common. Whereas IGF1R inhibitors may have little therapeutic impact in cetuximab resistant, the IGF1R inhibitor may modulate response to selected chemotherapeutic agents and to radiation. The IGF1R inhibitor appears to enhance cetuximab and methotrexate response, and modulates genes associated with radiation resistance thereby providing alternative regimens for recurrent and refractory HNSCC patients who have developed resistance to initial therapies. No significant financial relationships to disclose.


Sign in / Sign up

Export Citation Format

Share Document