scholarly journals Bladder Explosion during Transurethral Resection of the Prostate with Nitrous Oxide Inhalation

2015 ◽  
Vol 2015 ◽  
pp. 1-3
Author(s):  
Eiko Hirai ◽  
Joho Tokumine ◽  
Alan Kawarai Lefor ◽  
Shinobu Ogura ◽  
Miwako Kawamata

Bladder explosions are a rare complication of transurethral resection of the prostate. We report a patient who suffered a bladder rupture following transurethral resection of the prostate. Although explosive gases accumulate during the procedure, a high concentration of oxygen is needed to support an explosion. This rare phenomenon can be prevented by preventing the flow of room air into the bladder during the procedure to maintain a low concentration of oxygen inside the bladder.

Author(s):  

Extra or intraperitoneal bladder explosion is a rare complication of transurethral resection of the prostate (TURP) or bladder tumor resection associated with high morbidity. There were just over 25 reports of bladder explosion described in the literature until 2015. We report the case of a 56-year-old black man, diagnosed with prostatic adenocarcinoma and scheduled for tunneling by transurethral resection of prostate (TURP). His medical history included diabetes mellitus, hypertension, retinopathy with bilateral amaurosis, ischemic stroke, and myocardial infarction. He was successfully submitted to a continuous spinal technique and sedation. During the hemostatic phase of the procedure, a loud “pop sound” was heard in the operating room and the patient presented sudden arterial hypotension and abdominal distention. An exploratory laparotomy was done to manage the bladder explosion. The adequate resolution of this adverse event requires awareness and high clinical suspicion for prompt intervention.


2017 ◽  
Vol 8 (1) ◽  
pp. 31
Author(s):  
Woo Chan Lee ◽  
Sung Bin Park ◽  
Young Hwan Ko ◽  
Seung Min Hyun ◽  
Kyoon Duk Yoon

2007 ◽  
Vol 69 (6) ◽  
pp. 660-664
Author(s):  
Maki IWAKIRI ◽  
Noriko YASAKA ◽  
Kotaro ITO ◽  
Yuichi YOSHIDA ◽  
Yumiko KUBOTA ◽  
...  

Author(s):  
MdDidarul Islam, Ashiqur Rahaman, Aboni Afrose

This study was based on determining concentration of essential and toxic heavy metal in coconut water available at a local Hazaribagh area in Dhaka, Bangladesh. All essential minerals, if present in the drinking water at high concentration or very low concentration, it has negative actions. In this study, fifteen samples and eight heavy metals were analyzed by Atomic Absorption Spectroscopy (AAS) method which was followed by wet ashing digestion method. The concentration obtained in mg/l were in the range of 0.3 to 1.5, 7.77 to 21.2, 0 to 0.71, 0 to 0.9, 0 to 0.2, 0.9 to 17.3, 0.1 to 0.9, 0 to 0.9 and 0 to 0.7 for Fe, Ni, Cu, Cd, Cr, Zn, Pb and Se respectively. From this data it was concluded that any toxic heavy metals like Cd, Cr, Pb and Ni exceed their toxicity level and some essential nutrients were in low concentration in those samples. 


2017 ◽  
Vol 1 ◽  
pp. 264
Author(s):  
Md Didarul Islam ◽  
Ashiqur Rahaman ◽  
Fahmida Jannat

This study was based on to determine the concentration of macro and micro nutrients as well as toxic and nontoxic heavy metals present in the chicken feed available in Dhaka city of Bangladesh. All macro nutrients, if present in the feed at high concentration have some adverse effect, at the same time if this nutrient present in the feed at low concentration this have some adverse effect too. So that this nutrient level should be maintained at a marginal level. On the other side toxic heavy metals if present in the feed at very low concentration those can contaminate the total environment of the ecosystem. In this study six brand samples (starter, grower, finisher and layer) which was collected from different renowned chicken feed formulation industry in Bangladesh. Those samples were prepared for analysis by wet ashing and then metals were determined by Atomic Absorption Spectroscopy. It was found that 27.7 to 68.4, 57.3 to 121.9, 0.21 to 4.1, 0.32 to 2.1, 0.11 to 1.58, 0.28 to 2.11 and 0.28 to 1.78 for zinc, iron, copper, mercury, cadmium, nickel and cobalt respectively. It was found that essential macro and micro nutrients were present in the feed in low concentration on the other side mercury was present in high concentration in the feed samples.


2021 ◽  
Vol 13 (8) ◽  
pp. 4591
Author(s):  
Shuanglei Huang ◽  
Daishe Wu

The tremendous input of ammonium and rare earth element (REE) ions released by the enormous consumption of (NH4)2SO4 in in situ leaching for ion-adsorption RE mining caused serious ground and surface water contamination. Anaerobic ammonium oxidation (anammox) was a sustainable in situ technology that can reduce this nitrogen pollution. In this research, in situ, semi in situ, and ex situ method of inoculation that included low-concentration (0.02 mg·L−1) and high-concentration (0.10 mg·L−1) lanthanum (La)(III) were adopted to explore effective start-up strategies for starting up anammox reactors seeded with activated sludge and anammox sludge. The reactors were refrigerated for 30 days at 4 °C to investigate the effects of La(III) during a period of low-temperature. The results showed that the in situ and semi in situ enrichment strategies with the addition of La(III) at a low-concentration La(III) addition (0.02 mg·L−1) reduced the length of time required to reactivate the sludge until it reached a state of stable anammox activity and high nitrogen removal efficiency by 60–71 days. The addition of La(III) promoted the formation of sludge floc with a compact structure that enabled it to resist the adverse effects of low temperature and so to maintain a high abundance of AnAOB and microbacterial community diversity of sludge during refrigeration period. The addition of La(III) at a high concentration caused the cellular percentage of AnAOB to decrease from 54.60 ± 6.19% to 17.35 ± 6.69% during the enrichment and reduced nitrogen removal efficiency to an unrecoverable level to post-refrigeration.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Negisa Darajeh ◽  
Azni Idris ◽  
Paul Truong ◽  
Astimar Abdul Aziz ◽  
Rosenani Abu Bakar ◽  
...  

Palm oil mill effluent (POME), a pollutant produced by the palm oil industry, was treated by the Vetiver system technology (VST). This technology was applied for the first time to treat POME in order to decrease biochemical oxygen demand (BOD) and chemical oxygen demand (COD). In this study, two different concentrations of POME (low and high) were treated with Vetiver plants for 2 weeks. The results showed that Vetiver was able to reduce the BOD up to 90% in low concentration POME and 60% in high concentration POME, while control sets (without plant) only was able to reduce 15% of BOD. The COD reduction was 94% in low concentration POME and 39% in high concentration POME, while control just shows reduction of 12%. Morphologically, maximum root and shoot lengths were 70 cm, the number of tillers and leaves was 344 and 86, and biomass production was 4.1 kg m−2. These results showed that VST was effective in reducing BOD and COD in POME. The treatment in low concentration was superior to the high concentration. Furthermore, biomass of plant can be considered as a promising raw material for biofuel production while high amount of biomass was generated in low concentration of POME.


2008 ◽  
Vol 58 (5) ◽  
pp. 1101-1106
Author(s):  
Pichiah Saravanan ◽  
K. Pakshirajan ◽  
P. K. Saha

An indigenous mixed culture of microorganisms, isolated from a sewage treatment plant, was investigated for its potential to simultaneously degrade phenol and m-cresol during its growth in batch shake flasks. 22 full factorial designs with the two substrates as the factors, at two different levels and two different initial concentration ranges, were employed to carry out the biodegradation experiments. For complete utilisation of phenol and m-cresol, the culture took a minimum duration of 21 hrs at their low concentration of 100 mg/L each, and a maximum duration of 187 hrs at high concentration of 600 mg/L each in the multisubstrate system. The biodegradation results also showed that the presence of phenol in low concentration range (100–300 mg/L did not inhibit m-cresol biodegradation; on the other hand, presence of m-cresol inhibited phenol biodegradation by the culture. Moreover, irrespective of the concentrations used, phenol was degraded preferentially and earlier than m-cresol. During the culture growth, a lag phase was observed above a combined concentration of 500 mg/L i.e., 200 mg/L m-cresol and 300 mg/L of phenol and above). Statistical analysis of the specific growth rate of the culture in the multisubstrate system was also performed in the form of ANOVA and Student ‘t’ test, which gave good interpretation in terms of main and interaction effects of the substrates.


2021 ◽  
Vol 21 (2) ◽  
pp. 7-11
Author(s):  
Ahmed Mansoor Abbood ◽  
Haider K. Mehbes ◽  
Abdulkareem. F. Hasan

In this study, glass-filled epoxy functionally graded material (FGM) was prepared by adopting the hand lay-up method. The vertical gravity casting was used to produce a continuous variation in elastic properties. A 30 % volume fraction of glass ingredients that have mean diameter 90 μm was spread in epoxy resin (ρ = 1050 kg/m3). The mechanical properties of FGM were evaluated according to ASTM D638. Experimental results showed that a gradually relationship between Young’s modulus and volume fraction of glass particles, where the value of Young’s modulus at high concentration of glass particles was greater than that at low concentration, while the value of Poisson’s ratio at high concentration of glass particles was lower than that at low concentration. The manufacture of this FG beam is particularly important and useful in order to benefit from it in the field of various fracture tests under dynamic or cyclic loads.


1998 ◽  
Vol 38 (3) ◽  
pp. 95-102 ◽  
Author(s):  
G. Mazzolani ◽  
F. Pirozzi ◽  
G. d'Antonoi

Numerical models for the prediction of turbulent flow field and suspended solid distribution in sedimentation tanks are characterized by refined modeling of hydrodynamics, but apparently weak modeling of settling properties of suspensions. It is known that sedimentation tanks typically treat highly heterodisperse suspensions, whose concentrations range from relatively high to low values. However, settling is modeled either by considering one or more particle classes of different settling velocity, without accounting for hindered settling conditions, or by treating the suspension as monodisperse, even in regions of low concentration. A new generalized settling model is proposed to account for both discrete settling conditions in low concentration regions of the tanks and hindered settling conditions in high concentration regions. Settling velocities of heterodisperse suspensions are then determined as a function of particle velocities in isolation and their total concentration. The settling model is used in the framework of a transport model for the simulation of hydrodynamics and solid distribution in a rectangular sedimentation tank. Results show that solid distribution is mainly affected by particle interactions in the inlet region and by settling properties of individual particles in the outlet region. Comparison of the proposed settling model with other settling models suggests that a generalized approach of the modeling of settling properties of suspensions is a primary concern to obtain reliable predictions of the removal rate.


Sign in / Sign up

Export Citation Format

Share Document