scholarly journals Microelectrical Discharge Machining: A Suitable Process for Machining Ceramics

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Andreas Schubert ◽  
Henning Zeidler ◽  
Ralf Kühn ◽  
Matthias Hackert-Oschätzchen

Today ceramics are used in many industrial applications, for example, in the biomedical field, for high-temperature components or for cutting tools. This is attributed to their excellent mechanical and physical properties, as low density, high strength, and hardness or chemical resistance. However, these specific mechanical properties lead to problems regarding the postprocessing of ceramics. In particular, cutting processes require expensive tools which cause high manufacturing costs to machine ceramics. Consequently, there is a demand for alternative machining processes. Microelectrical discharge machining (micro-EDM) is a thermal abrasion process which is based on electrical discharges between a tool and a workpiece. The advantages of micro-EDM are more and more in focus for ceramic machining. These advantages include the process of being a noncontact technology, an independency of material brittleness and hardness, a low impact on the material, and the achievable microstructures. This paper presents the current state of investigations regarding micro-EDM of ceramics. Beside the process principle of EDM, the used procedures for machining ceramics and insulating ceramics are described. Furthermore several machining examples are presented to demonstrate the possibilities of the micro-EDM process with regard to the machining of ceramics.

2018 ◽  
Vol 108 (06) ◽  
pp. 473-478
Author(s):  
A. Gebhardt ◽  
M. Schneider

Bauteile aus CFK (kohlenstofffaserverstärkte Kunststoffe) werden meist spanend endbearbeitet. Diese Bearbeitung kann unter Überflutung durch KSS (Kühlschmierstoffe) oder trocken stattfinden. Die hier vorgestellte Studie zeigt für die Trockenzerspanung, wie die notwendige Erfassung von Stäuben und Spänen stattfindet, welche Technologien eingesetzt werden und wie eine Maschinen- und Bauteilreinigung aussieht.   A machining process is mostly used as a last step in the production of workpieces made of CFRP. In this machining process lubricants may be used or dry cutting processes are applicated. The here presented study shows for dry machining processes, which technologies are used for the dust and chip extraction. Furthermore, the techniques for the cleaning of the machine, the clamping system and workpiece are presented.


2019 ◽  
Vol 813 ◽  
pp. 55-61
Author(s):  
Juan Manuel Vázquez-Martínez ◽  
Irene Del Sol ◽  
Moises Batista ◽  
Severo Raúl Fernández-Vidal ◽  
Pedro M. Hernandez ◽  
...  

Machining process usually involves relevant wear effects on the cutting tool, producing undesirable surface features on the work-pieces. Lubricants and cooling fluids are used with the aim to minimize the wear phenomena as well as high temperatures produced during the cutting processes. However, the use of these fluids may have an adverse environmental impact. For this reason, the reduction of quantity of cutting fluids used in the machining process is a requirement in order to improve the performance and sustainability of the process. For this purpose, this work proposes an increase of the lubricant retention ability for cutting tools based on surface modification. In this research, micro-geometrical features of Carbide (WC-Co) surfaces have been modified by laser texturing techniques. A wide range of roughness topographies had been developed by changing the laser irradiation parameters of energy density of pulse (Ed) and scanning speed of the beam (Vs). Different geometries of the textured tracks (single spots, linear tracks, circular tracks) also were studied. Moreover, through specific roughness features conducted by texturing process, the retention ability of cutting fluids was modified. It was evaluated by the contact angle between liquid and solid phases. This modification allowed to increase the self-lubricant effect of the WC-Co surface. This methodology has been validated on carbide tools under lubricated machining processes. Wear effects on the cutting tool were reduced and the surface finish of the machined parts was remained at least in the same ranges as non-modified tools.


2005 ◽  
Vol 6-8 ◽  
pp. 817-824
Author(s):  
Reimund Neugebauer ◽  
V. Kräusel ◽  
H. Bräunlich

The application of high-tensile sheet metal materials in car body construction requires the development of new production strategies for preparing sheet metal part edges where laser welding operations have to be performed. Using up this sheet materials in cutting processes for car bodies lead to higher stressing of active tool parts. To arrive the same tool life quantities as is presently the standard in the production process using conventional materials it is necessary to modify the tool designs for cutting tools, to determine well adapted tool materials and coatings, to choose modified lubricants and to optimize the surface quality of tools for cutting operations.


Author(s):  
Florian Kuisat ◽  
Fernando Lasagni ◽  
Andrés Fabián Lasagni

AbstractIt is well known that the surface topography of a part can affect its mechanical performance, which is typical in additive manufacturing. In this context, we report about the surface modification of additive manufactured components made of Titanium 64 (Ti64) and Scalmalloy®, using a pulsed laser, with the aim of reducing their surface roughness. In our experiments, a nanosecond-pulsed infrared laser source with variable pulse durations between 8 and 200 ns was applied. The impact of varying a large number of parameters on the surface quality of the smoothed areas was investigated. The results demonstrated a reduction of surface roughness Sa by more than 80% for Titanium 64 and by 65% for Scalmalloy® samples. This allows to extend the applicability of additive manufactured components beyond the current state of the art and break new ground for the application in various industrial applications such as in aerospace.


1994 ◽  
Vol 116 (3) ◽  
pp. 423-429 ◽  
Author(s):  
J. C. Wang ◽  
S. M. Hsu

Ceramics are hard and brittle. Machining such materials is time-consuming, difficult, and expensive. Current machining technology requires stiff machine, high hardness tools, and small material removal rates to minimize surface damage. This study demonstrates the feasibility of a novel ceramic machining concept that utilizes chemical reactions at the tool-workpiece interface to reduce the stress and minimize the surface damage. A series of cutting tests using a diamond wheel on silicon nitride with different chemical compounds has been performed. The results demonstrate that by using different chemistries, the material removal rate and the surface finish of the machined ceramic can be significantly altered. Some halogenated hydrocarbons show a significant improvement over some commercial machining fluids currently in use.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2136
Author(s):  
Sharizal Ahmad Sobri ◽  
Robert Heinemann ◽  
David Whitehead

Carbon fibre reinforced polymer composites (CFRPs) can be costly to manufacture, but they are typically used anywhere a high strength-to-weight ratio and a high steadiness (rigidity) are needed in many industrial applications, particularly in aerospace. Drilling composites with a laser tends to be a feasible method since one of the composite phases is often in the form of a polymer, and polymers in general have a very high absorption coefficient for infrared radiation. The feasibility of sequential laser–mechanical drilling for a thick CFRP is discussed in this article. A 1 kW fibre laser was chosen as a pre-drilling instrument (or initial stage), and mechanical drilling was the final step. The sequential drilling method dropped the overall thrust and torque by an average of 61%, which greatly increased the productivity and reduced the mechanical stress on the cutting tool while also increasing the lifespan of the bit. The sequential drilling (i.e., laser 8 mm and mechanical 8 mm) for both drill bits (i.e., 2- and 3-flute uncoated tungsten carbide) and the laser pre-drilling techniques has demonstrated the highest delamination factor (SFDSR) ratios. A new laser–mechanical sequence drilling technique is thus established, assessed, and tested when thick CFRP composites are drilled.


2020 ◽  
Vol 15 (4) ◽  
Author(s):  
Mahesh Mallampati ◽  
Sreekanth Mandalapu ◽  
Govidarajulu C

The composite materials are replacing the traditional materials because oftheir superior properties such as high tensile strength, low thermal expansion, high strength to weight ratio, low cost, lightweight, high specific modulus, renewability and biodegradability which are the most basic & common attractive features of composites that make them useful for industrial applications. The developments of new materials are on the anvil and are growing day by day. The efforts to produce economically attractive composite components have resulted in several innovative manufacturing techniques currently being used in the composites industry. Generally, composites consist of mainly two phases i.e., matrix and fiber. In this study, woven roving mats (E-glass fiber orientation (-45°/45°,0°/90°, - 45°/45°),UD450GSM)were cut in measured dimensions and a mixture of Epoxy Resin (EPOFINE-556, Density-1.15gm/cm3), Hardener (FINE HARDTM 951, Density- 0.94 gm/cm3) and Acetone [(CH3)2CO, M= 38.08 g/mol] was used to manufacture the glass fiber reinforced epoxy composite by hand lay-up method. Mechanical properties such as tensile strength, SEM analysis, hardness test, density tests are evaluated.


2014 ◽  
Vol 2 (2) ◽  
Author(s):  
Diego Alejandro Neira Moreno

El estudio de las variables y efectos derivados del mecanizado provee herramientas de conocimiento tendientes a optimizar el uso de las herramientas y los procedimientos de maquinado industrial. Este artículo de reflexión aborda el uso de los dispositivos de interrupción súbita (DIS) como herramientas de obtención de raíces de viruta para la investigación científica del mecanizado industrial, y para el estudio de los efectos derivados de la interacción entre las herramientas de corte y el material de trabajo, en función de los cambios microestructurales del material de trabajo, dependientes de la temperatura producida y los esfuerzos mecánicos de la herramienta de corte durante el mecanizado. Mediante la reflexión se destaca la importancia de los DIS como instrumentos de investigación científica en la manufactura, ya que estos permiten obtener muestras de viruta para estudiar las variables incidentes en el maquinado y a partir de esta evidencia, proponer alternativas para optimizar la fabricación de piezas y la integridad de las herramientas empleadas en el proceso.AbstractThe study of the variables and effects derived from the machining processes brings the knowledge needed to optimize the use of machining tools and procedures. This article is an opinion piece about the use of quick stop devices (QSD) as a scientific research instrument in machining projects to obtain chip roots, to study the interaction phenomena between cutting tool and work piece material that depends on temperature and the mechanical forces produced by the cutting tool during the cutting process. This article deals about how important the QSD are as a research instruments in manufacture because with this instruments it is possible to analyze the machining variables, based on the evidences bring by the chip roots obtained with the instrument. It is possible to propose optimization alternatives in the manufacture of machined parts and the integrity of cutting tools.


Sign in / Sign up

Export Citation Format

Share Document