scholarly journals Plant Beneficial Endophytic Bacteria from the Ethnomedicinal Mussaenda roxburghii (Akshap) of Eastern Himalayan Province, India

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Pramod Kumar Pandey ◽  
Ramkrishna Samanta ◽  
Raj Narain Singh Yadav

Mussaenda roxburghii are very important ethnomedicinal plant, used for its various applications from the ancient period. The role of their associated plant beneficial endophytic bacteria was evaluated, which were previously untapped. Among the isolates, PAK6 was identified as efficient phosphate solubilizer, quantified by the molybdenum blue method. Four isolates PAK1, PAK2, PAK3, and PAK8 were able to synthesize significant level of IAA in the presence and absence of tryptophan. Isolates PAK1 and PAK9 were able to produce siderophore on CAS agar media, PAK2 and PAK9 were able to produce HCN, and PAK7 and PAK8 were able to grow on N2-free medium. All the isolates were able to produce a moderate level of polysaccharide and tolerate up to 10% of NaCl. Isolates PAK3, PAK6, PAK7, and PAK8 were able to grow well at pH 5.0 and isolates PAK2, PAK7, and PAK8 were able to tolerate 600 μg mL−1 of Al+3, while all the isolates except PAK1 showed a tolerance to 600 μg mL−1 of Mn+2 tested. Endophytic bacterial isolates PAK6 and PAK9 were effective against Sclerotinia sclerotiorum and Sclerotium rolfsii.

2014 ◽  
Vol 169 (7-8) ◽  
pp. 527-532 ◽  
Author(s):  
Ioannis Papapostolou ◽  
Marina Sideri ◽  
Christos D. Georgiou

2017 ◽  
Vol 18 (4) ◽  
pp. 1308-1315 ◽  
Author(s):  
MARDHIANA MARDHIANA ◽  
ANKARDIANSYAH PANDU PRADANA ◽  
MUH ADIWENA ◽  
DWI SANTOSO ◽  
RIZZA WIJAYA ◽  
...  

Mardhiana, Pradana AP, Adiwena M, Santoso D, Wijaya R, Murtilaksono A. 2017. Use of endophytic bacteria from roots of Cyperus rotundus for biocontrol of Meloidogyne incognita. Biodiversitas 18: 1308-1315. Yield loss due to M. incognita infection in tomato plants cultivation can reach 60%. The problem is able to be solved through the application of endophytic bacteria. In this study, endophytic bacteria from root Cyperus rotundus were isolated using Tryptic Soy Agar media. The bacteria isolates were then tested their safety against plants and mammals. The phenotypic and physiological properties of selected isolates were characterized and tested to know their resistance to antibiotics, and their ability in suppressing the infection rate of M. incognita on tomato. Eighteen bacterial isolates were obtained and 8 of them are categorized as safe bacteria for plants and mammals, which could be used in further tests. A result of the physiological test showed that bacterial isolates were able to produce protease enzyme (87.5%), chitinase enzyme (62.5%), and HCN (37.5%), having urease activity (75%) and could dissolve phosphate (87.5%). Based on the test results, all endophytic bacteria effectively increased tomato growth and suppressed the severity of M. incognita infection with the most stable isolate as a biocontrol agent of M. incognita was CRS16.


2021 ◽  
Vol 759 (1) ◽  
pp. 012025
Author(s):  
R Simarmata ◽  
Nuriyanah ◽  
L Nurjanah ◽  
J R L Sylvia ◽  
T Widowati

2021 ◽  
Vol 9 (7) ◽  
pp. 1448
Author(s):  
Lei Gao ◽  
Jinbiao Ma ◽  
Yonghong Liu ◽  
Yin Huang ◽  
Osama Abdalla Abdelshafy Mohamad ◽  
...  

Endophytes associated with halophytes may contribute to the host’s adaptation to adverse environmental conditions through improving their stress tolerance and protecting them from various soil-borne pathogens. In this study, the diversity and antifungal activity of endophytic bacteria associated with halophytic samples growing on the shore of the western Aral Sea in Uzbekistan were investigated. The endophytic bacteria were isolated from the nine halophytic samples by using the culture-dependent method and identified according to their 16S rRNA gene sequences. The screening of endophytic bacterial isolates with the ability to inhibit pathogenic fungi was completed by the plate confrontation method. A total of 289 endophytic bacterial isolates were isolated from the nine halophytes, and they belong to Firmicutes, Actinobacteria, and Proteobacteria. The predominant genera of the isolated endophytic bacteria were Bacillus, Staphylococcus, and Streptomyces, accounting for 38.5%, 24.7%, and 12.5% of the total number of isolates, respectively. The comparative analysis indicated that the isolation effect was better for the sample S8, with the highest diversity and richness indices. The diversity index of the sample S7 was the lowest, while the richness index of samples S5 and S6 was the lowest. By comparing the isolation effect of 12 different media, it was found that the M7 medium had the best performance for isolating endophytic bacteria associated with halophytes in the western Aral Sea Basin. In addition, the results showed that only a few isolates have the ability to produce ex-enzymes, and eight and four endophytic bacterial isolates exhibited significant inhibition to the growth of Valsa mali and Verticillium dahlia, respectively. The results of this study indicated that halophytes are an important source for the selection of microbes that may protect plant from soil-borne pathogens.


Author(s):  
Anna Storey ◽  
Khalil Elgmati ◽  
Yisu Wang ◽  
Paul Knaggs ◽  
Karl Swann

Abstract At fertilization in mice and humans, the activation of the egg is caused by a series of repetitive Ca2+ oscillations which are initiated by phospholipase-C(zeta)ζ that generates inositol-1-4-5-trisphophate (InsP3). Ca2+ oscillations and egg activation can be triggered in mature mouse eggs by incubation in Sr2+ containing medium, but this does not appear to be effective in human eggs. Here we have investigated the reason for this apparent difference using mouse eggs, and human eggs that failed to fertilize after IVF or ICSI. Mouse eggs incubated in Ca2+-free, Sr2+-containing medium immediately underwent Ca2+ oscillations but human eggs consistently failed to undergo Ca2+ oscillations in the same Sr2+ medium. We tested the InsP3-receptor (IP3R) sensitivity directly by photo-release of caged InsP3 and found that mouse eggs were about 10 times more sensitive to InsP3 than human eggs. There were no major differences in the Ca2+ store content between mouse and human eggs. However, we found that the ATP concentration was consistently higher in mouse compared to human eggs. When ATP levels were lowered in mouse eggs by incubation in pyruvate-free medium, Sr2+ failed to cause Ca2+ oscillations. When pyruvate was added back to these eggs, the ATP levels increased and Ca2+ oscillations were induced. This suggests that ATP modulates the ability of Sr2+ to stimulate IP3R-induced Ca2+ release in eggs. We suggest that human eggs may be unresponsive to Sr2+ medium because they have a lower level of cytosolic ATP.


2020 ◽  
Vol 9 (1) ◽  
pp. 45
Author(s):  
María del Carmen Molina ◽  
James F. White ◽  
Sara García-Salgado ◽  
M. Ángeles Quijano ◽  
Natalia González-Benítez

So far, the relative importance of the plant and its microbiome in the development of early stages of plant seedling growth under arsenic stress has not been studied. To test the role of endophytic bacteria in increasing plant success under arsenic stress, gnotobiotic seeds of J. montana were inoculated with two endophytic bacteria: Pantoea conspicua MC-K1 (PGPB and As resistant bacteria) and Arthrobacter sp. MC-D3A (non-helper and non-As resistant bacteria) and an endobacteria mixture. In holobiotic seedlings (with seed-vectored microbes intact), neither the capacity of germination nor development of roots and lateral hairs was affected at 125 μM As(V). However, in gnotobiotic seedlings, the plants are negatively impacted by absence of a microbiome and presence of arsenic, resulting in reduced growth of roots and root hairs. The inoculation of a single PGPB (P. conspicua-MCK1) shows a tendency to the recovery of the plant, both in arsenic enriched and arsenic-free media, while the inoculation with Arthrobacter sp. does not help in the recovery of the plants. Inoculation with a bacterial mixture allows recovery of plants in arsenic free media; however, plants did not recover under arsenic stress, probably because of a bacterial interaction in the mixture.


HortScience ◽  
2018 ◽  
Vol 53 (10) ◽  
pp. 1487-1493 ◽  
Author(s):  
Doina Clapa ◽  
Claudiu Bunea ◽  
Orsolya Borsai ◽  
Adela Pintea ◽  
Monica Hârța ◽  
...  

The current research was carried out to investigate the effects of iron source in the culture media for Vaccinium corymbosum L. ʻBluerayʼ, ʻDukeʼ, and ʻPatriotʼ cultivars grown on five different types of medium (Woody Plant Medium supplemented with 1.0 mg·L−1 zeatin and 0, 25, 50, 75, and 100 mg·L−1 Sequestrene 138). After 10 weeks of culture, seven physiological parameters were measured, such as the number and length of axillary shoots, rooting and acclimatization percentage, as well as chlorophyll (a, b, a/b) and carotenoid content of the leaves. Adding Sequestrene 138 to the culture media led to a slight decrease of the proliferation rate but increased the length of the shoots. The chlorophyll and carotenoid content in all of the three cultivars was considerably increased as the iron concentration of the media increased. The shoots developed on the Sequestrene 138–free medium were chlorotic and short, whereas at different concentrations of iron in the culture medium the shoots were dark green and vigorous, providing a greater acclimatization success than those grown in iron-free medium.


1994 ◽  
Vol 267 (6) ◽  
pp. C1543-C1552 ◽  
Author(s):  
M. Kimura ◽  
K. Nakamura ◽  
J. W. Fenton ◽  
T. T. Andersen ◽  
J. P. Reeves ◽  
...  

The role of external Na+ in agonist-evoked platelet Ca2+ response is poorly understood. This was explored in this study. Removal of external Na+ decreased both cytosolic Ca2+ mobilization and external Ca2+ entry, induced by thrombin but not by ADP or vasopressin. That external Na+ regulates thrombin activities was demonstrated by 1) Na+ dependency of the amidolytic activity of thrombin, 2) inhibition of thrombin binding to the high-affinity binding sites in Na(+)-free medium, and 3) attenuation of thrombin-induced inositol 1,4,5-trisphosphate production in Na(+)-free medium. Moreover, Ca2+ response to the thrombin receptor 6-amino acid peptide was independent of external Na+. The role of external Na+ in modifying agonist-evoked Ca2+ response through activation of Na+/H+ antiport and cytosolic alkalinization was then explored. Cytosolic alkalinization by monensin or NH4Cl enhanced thrombin, ADP, and thimerosal-induced external Ca2+ entry. Thimerosal-induced acceleration of external Ca2+ entry was diminished by the inhibition of Na+/H+ antiport. Thus external Na+ enhances thrombin activities, and cytosolic pH mediates store-regulated external Ca2+ entry. However, Na+/H+ antiport activation is not essential for agonist-evoked Ca2+ mobilization and external Ca2+ entry.


2020 ◽  
Vol 13 (2) ◽  
pp. 179-191
Author(s):  
Oktira Roka Aji ◽  
Iva Dita Lestari

AbstrakBakteri endofit hidup dalam suatu tanaman tanpa menyebabkan gangguan bagi tanaman yang berperan penting dalam menstimulasi pertumbuhan tanaman, yaitu dengan memproduksi fitohormon seperti asam absisat, asam indol asetat, dan sitokinin. Penelitian ini bertujuan untuk mengisolasi, menyeleksi, dan mengidentifikasi bakteri endofit yang terdapat pada daun, batang, dan akar tanaman jeruk nipis (Citrus aurantifolia). Isolat bakteri endofit diseleksi berdasarkan kemampuannya dalam menghasilkan asam indol asetat (AIA). Isolat bakteri endofit ditumbuhkan pada media nutrient broth (NB) yang ditambah dengan L-triptofan. Konsentrasi AIA dihitung dengan penambahan reagen salkowski dan diukur menggunakan spektrofotometer pada panjang gelombang 530 nm. Identifikasi bakteri endofit dilakukan dengan analisis uji biokimia. Isolat bakteri endofit yang berhasil diisolasi sebanyak 12 isolat, yaitu 4 isolat dari daun, 4 isolat dari batang, dan 4 isolat dari akar. Hasil pengamatan pada uji AIA menunjukkan bahwa semua isolat bakteri endofit dapat menghasilkan hormon AIA. Isolat yang menghasilkan konsentrasi hormon AIA tertinggi adalah isolat B2 (6,51 ppm). Isolat bakteri yang berhasil diidentifikasi berasal dari genus Enterobacter, Bacillus, Pseudomonas, dan Staphylococcus. Bakteri endofit yang dapat menghasilkan AIA berpotensi dikembangkan sebagai biofertilizer untuk meningkatkan produktivitas tanaman. Abstract Endophytic bacteria live inside plants without causing disruption to plants and play an important role in stimulating plant growth. This study aims to isolate endophytic bacteria from lime plant (Citrus aurantifolia) and characterize its ability to produce indole acetic acid (IAA). Bacterial isolates were grown on media supplemented with L-tryptophan as IAA precursor. The bacterial supernatant was mixed with salkowski reagents and then measured using a spectrophotometer at 530 nm. Bacterial identification was carried out using biochemical characteristic analysis. A total of 12 endophytic bacterial isolates were successfully isolated from leaves, stem and roots of plants. Quantitative test results showed that all isolates can produce IAA. The highest concentration of IAA was produced by B2 (6.51 ppm). Biochemical analysis indicated that the isolates were from the genus Enterobacter, Bacillus, Pseudomonas and Staphylococcus. Endhophytic bacteria that can produce IAA have the potential to be developed as biofertilizers to increase crop productivity.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3736-3736
Author(s):  
Tanabe Mikoto ◽  
Nguyen Hoang Maianh ◽  
Kohei Hosokawa ◽  
Noriharu Nakagawa ◽  
Luis Espinoza ◽  
...  

[Background] Glycosylphosphatidylinositol-anchored proteins (GPI-APs) on hematopoietic stem progenitor cells (HSPCs) may have some roles in the negative regulation of the HSPC commitment induced by inflammatory cytokines given the fact that progenies of GPI(-) HSPC are often detected in patients with immune-mediated bone marrow (BM) failure. CD109, one of the GPI-APs expressed by keratinocytes and HSPCs in humans, serves as a TGF-β co-receptor and is reported to inhibit TGF-β signaling in keratinocytes; however, the role of CD109 on HSPCs remains unknown. We previously demonstrated that TGF-β induced erythroid differentiation of TF-1 cells, a myeloid leukemia cell line that expresses CD109, in a dose-dependent manner and that knockout of the CD109 gene resulted in erythroid differentiation of TF-1 cells cultured in fetal bovine serum-containing medium, suggesting an inhibitory role of CD109 in the erythroid differentiation of HSPCs induced by low levels of TGF-β (Blood, 2018. 132 (Suppl.1) :3874). However, as most CD109 KO TF-1 cells changed into erythroid cells, they were unsuitable for investigating the role of CD109 in the erythroid differentiation induced by TGF-β. To overcome this issue, we prepared TF-1 cells and cord blood (CB) HSPCs in which the CD109 expression was transiently downregulated, and attempted to further clarify the role of CD109. [Methods] TF-1 cells and CD34+ cells isolated from CB mononuclear cells were treated with siRNA that was complementary to CD109 mRNA. CD109 knockdown cells were cultured for 4 days in serum-free medium supplemented with stem cell factor, thrombopoietin, and erythropoietin with or without TGF-β. In separate experiments, TF-1 cells were treated with phosphatidylinositol-specific phospholipase C (PIPL-C) treatment for 1 hour and were incubated in the presence or absence of TGF-β. CD109 KO TF-1 cells were incubated in serum-free medium (StemPro-34 SFM) for 14 days and their phenotype was determined using flow cytometry (FCM). The erythroid differentiation of the cells was assessed by testing the expression of glycophorin A (GPA) and iron staining. [Results] The down-regulation of CD109 in TF-1 cells by the siRNA treatment increased GPA expression in response to 12 ng/ml of TGF-β from 1.77% to 35.6%. The transient depletion of GPI-APs by PIPL-C also augmented the GPA expression induced by TGF-β from 1.27% to 6.77%. In both BM of healthy individuals and CB, CD109 was more abundantly expressed in Lin-CD34+CD38-CD90+CD45RA- hematopoietic stem cells (HSCs) than in Lin-CD34+CD38-CD90-CD45RA- multipotent progenitors (MPPs) and Lin-CD34+CD38+ HSPCs (Fig. 1). The treatment of CB cells with siRNA reduced the CD109 expression in Lin-CD34+CD38+ cells from 55.9% to 23.1%. TGF-β induced the expression of GPA in Lin-CD34+CD38+CD123-CD45RA- megakaryocyte-erythrocyte progenitor cells (MEPs) of CD109 knockdown cells to a greater degree than the control counterpart (Fig. 2). During 14-day serum-free culture, GPA-positive CD109 KO TF-1 cells died, and similarly to WT TF-1 cells, most surviving CD109 KO TF-1 cells were GPA-negative. TGF-β treatment induced erythroid differentiation in CD109 KO TF-1 cells to a greater degree than in WT TF-1 cells. [Conclusions] CD109 plays a key role in the inhibition of TF-1 erythroid differentiation in response to TGF-β. CD109 may suppress TGF-β signaling, and the lack of CD109 may make PIGA-mutated HSPCs more sensitive to TGF-β, thus leading to the preferential commitment of the mutant erythroid progenitor cells to mature red blood cells in immune-mediated BM failure. Disclosures Yamazaki: Novartis Pharma K.K.: Honoraria; Sanofi K.K.: Honoraria; Nippon Shinyaku Co., Ltd.: Honoraria. Nakao:Novartis Pharma K.K: Honoraria; Bristol-Myers Squibb: Honoraria; Takeda Pharmaceutical Company Limited: Honoraria; Celgene: Honoraria; Ono Pharmaceutical: Honoraria; Chugai Pharmaceutical Co.,Ltd: Honoraria; Kyowa Kirin: Honoraria; Alaxion Pharmaceuticals: Honoraria; Ohtsuka Pharmaceutical: Honoraria; Daiichi-Sankyo Company, Limited: Honoraria; Janssen Pharmaceutical K.K.: Honoraria; SynBio Pharmaceuticals: Consultancy.


Sign in / Sign up

Export Citation Format

Share Document