scholarly journals Ghrelin Protects against Dexamethasone-Induced INS-1 Cell Apoptosis via ERK and p38MAPK Signaling

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Chengshuo Zhang ◽  
Le Li ◽  
Bochao Zhao ◽  
Ao Jiao ◽  
Xin Li ◽  
...  

Glucocorticoid excess induces apoptosis of islet cells, which may result in diabetes. In this study, we investigated the protective effect of ghrelin on dexamethasone-induced INS-1 cell apoptosis. Our data showed that ghrelin (0.1 μM) inhibited dexamethasone-induced (0.1 μM) apoptosis of INS-1 cells and facilitated cell proliferation. Moreover, ghrelin upregulated Bcl-2 expression, downregulated Bax expression, and decreased caspase-3 activity. The protective effect of ghrelin against dexamethasone-induced INS-1 cell apoptosis was mediated via growth hormone secretagogue receptor 1a. Further studies revealed that ghrelin increased ERK activation and decreased p38MAPK expression after dexamethasone treatment. Ghrelin-mediated protection of dexamethasone-induced apoptosis of INS-1 cells was attenuated using the ERK inhibitor U0126 (10 μM), and cell viability increased using the p38MAPK inhibitor SB203580 (10 μM). In conclusion, ghrelin could protect against dexamethasone-induced INS-1 cell apoptosis, at least partially via GHS-R1a and the signaling pathway of ERK and p38MAPK.

2004 ◽  
Vol 286 (3) ◽  
pp. H1063-H1069 ◽  
Author(s):  
Jin-Jiang Pang ◽  
Rong-Kun Xu ◽  
Xiang-Bin Xu ◽  
Ji-Min Cao ◽  
Chao Ni ◽  
...  

Loss of cardiomyocytes by apoptosis is proposed to cause heart failure. Angiotensin II (ANG II), an important neurohormonal factor during heart failure, can induce cardiomyocyte apoptosis. Inasmuch as hexarelin has been reported to have protective effects in this process, we examined whether hexarelin can prevent cardiomyocytes from ANG II-induced cell death. Cultured cardiomyocytes from neonatal rats were stimulated with ANG II. Apoptosis was evaluated using fluorescence microscopy, TdT-mediated dUTP nick-end labeling (TUNEL) method, flow cytometry, DNA laddering, and analysis of cell viability by (3,4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). It was found that incubation with 0.1 μmol/l ANG II for 48 h increased cardiomyocyte apoptosis. Administration of 0.1 μmol/l hexarelin significantly decreased this ANG II-induced apoptosis and DNA fragmentation and increased myocyte viability. To further investigate the underlying mechanisms, caspase-3 activity assay and mRNA expression of Bax, Bcl-2, and growth hormone secretagogue receptor (GHS-R; the supposed hexarelin binding site) were examined. GHS-R mRNA was abundantly expressed in cardiomyocytes and was upregulated after administration of hexarelin. These results suggest that hexarelin abates cardiomyocytes from ANG II-induced apoptosis possibly via inhibiting the increased caspase-3 activity and Bax expression induced by ANG II and by increasing the expression of Bcl-2, which is depressed by ANG II. Whether the upregulated expression of GHS-R induced by hexarelin is associated with this antiapoptotic effect deserves further investigation.


2012 ◽  
Vol 90 (12) ◽  
pp. 1569-1575 ◽  
Author(s):  
Jian-Zhe Li ◽  
Shu-Yi Yu ◽  
Jian-Hua Wu ◽  
Qing-Rui Shao ◽  
Xiao-Min Dong

Increased intracellular reactive oxygen species (ROS) are involved in doxorubicin (DOX)-induced myocardial cell apoptosis, and paeoniflorin (PEF) has been shown to exert an antioxidant effect. The aim of the present study was to explore the protective effect of PEF on DOX-induced myocardial cell apoptosis and the underlying mechanisms. In cultured H9c2 cells, different concentrations (1, 10, or 100 μmol/L) of PEF was added for 2 h prior to exposure to DOX (5 μmol/L) for 24 h. Cell apoptosis was evaluated by hoechst 33342 staining, and caspase-3 expression and activity. The mRNA and protein expression of NADPH oxidase (NOX) 2 and NOX4 was determined by real-time polymerase chain reaction and Western blot, respectively. Intracellular ROS and NOX activity were measured by assay kit. The results showed that DOX significantly increased myocardial cell apoptosis, increased caspase-3 expression and activity concomitantly with enhanced ROS production, and increased NOX2, NOX4 mRNA and protein expression, and NOX activity. These effects were remarkably inhibited by pretreatment of PEF. Our results suggested that PEF has a protective effect against DOX-induced myocardial cell apoptosis through a mechanism involving a decrease in ROS production by inhibition of NOX2, NOX4 expression, and NOX activity.


2012 ◽  
Vol 303 (1) ◽  
pp. E132-E143 ◽  
Author(s):  
Fang Zhao ◽  
Fengjie Huang ◽  
Mengxiong Tang ◽  
Xiaoming Li ◽  
Nina Zhang ◽  
...  

We demonstrated previously that the activation of ALK7 (activin receptor-like kinase-7), a member of the type I receptor serine/threonine kinases of the TGF-β superfamily, resulted in increased apoptosis and reduced proliferation through suppression of Akt signaling and the activation of Smad2-dependent signaling pathway in pancreatic β-cells. Here, we show that Nodal activates ALK7 signaling and regulates β-cell apoptosis. We detected Nodal expression in the clonal β-cell lines and rodent islet β-cells. Induction of β-cell apoptosis by treatment with high glucose, palmitate, or cytokines significantly increased Nodal expression in clonal INS-1 β-cells and isolated rat islets. The stimuli induced upregulation of Nodal expression levels were associated with elevation of ALK7 protein and enhanced phosphorylated Smad3 protein. Nodal treatment or overexpression of Nodal dose- or time-dependently increased active caspase-3 levels in INS-1 cells. Nodal-induced apoptosis was associated with decreased Akt phosphorylation and reduced expression level of X-linked inhibitor of apoptosis (XIAP). Remarkably, overexpression of XIAP or constitutively active Akt, or ablation of Smad2/3 activity partially blocked Nodal-induced apoptosis. Furthermore, siRNA-mediated ALK7 knockdown significantly attenuated Nodal-induced apoptosis of INS-1 cells. We suggest that Nodal-induced apoptosis in β-cells is mediated through ALK7 signaling involving the activation of Smad2/3-caspase-3 and the suppression of Akt and XIAP pathways and that Nodal may exert its biological effects on the modulation of β-cell survival and β-cell mass in an autocrine fashion.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1872-1872
Author(s):  
Mo Yang ◽  
Shing Chan ◽  
Yiu Fai Cheung ◽  
Shau Yin Ha ◽  
Godfrey ChiFung Chan

Abstract Cardiomyopathy and liver damage due to iron-overload are the major complications in patients with beta-thalassaemia major. Iron-overload may induce apoptosis in cardiomyocytes and hepatic cells, and that TPO may exert protective effect on apoptosis of cardiomyocytes (Circulation, 2006). In this study, we demonstrated firstly that iron induced apoptosis in cardiomyocytes. Using H9C2 cells, we have shown that iron reduced cell viability in a dose-dependent manner (0.003–3 mM) (n=6). By annexin V and PI staining, apoptotic cells were found to be significantly increased after iron treatment (0.3 mM, 72 hrs) (n=6). The expression of active caspase-3 was significantly increased in iron-treated cells. Furthermore, iron treatment increased the proportion of cells containing JC-1 monomers, indicating a trend in the drop of mitochondrial membrane potential (n=6). Secondly, we found that TPO exerted cardio-protective effect on iron-induced apoptosis. H9C2 cells were cultured in the presence of iron (0.3 mM) with or without TPO (5, 10, 20, 50, 100 ng/mL, 72 hrs). The cell viability was significantly increased with the treatment of TPO at 50 ng/mL and 100 ng/mL (n=4). Dot-plot analysis of annexin V/PI staining demonstrated that TPO (50 ng/mL) significantly reduced the population of apoptotic cells (n=6). Incubation with TPO also decreased the iron-induced caspase-3 expression (n=6). Flow cytometric dot-plot analysis of H9C2 cells also showed trends of amelioration of the increase in JC-1 monomers in the iron plus TPO group (n=6). The population of phospho-Akt and Erk1/2 were also significantly increased after treatment by TPO (P<0.05, n=4). Human liver cell line MIHA was also used as a cell model. We showed that iron-overload reduced cell viability in a dose-dependent manner (0.0375–0.6 mM) (n=7). By annexin V and PI staining, apoptotic cells were found to be significantly increased after iron treatment (0.15–0.6 mM) for 72 hrs (n=7). The expression of active caspase-3 was also significantly increased in iron-treated cells (n=5). We also found that TPO exerted proliferation effect on MIHA cell by activation of phospho-Akt. However, MIHA cells were cultured in the presence of iron (0.3 mM) with TPO (50 ng/mL, 72 hrs). The cell viability was not significantly increased with the treatment of TPO (n=5). Dot-plot analysis of annexin V/PI staining did not demonstrated that TPO reduced the population of apoptotic cells induced by iron-overload (n=5). Also, incubation with TPO did not decrease the iron-induced caspase-3 expression in these cells (n=5). Our findings suggest that iron-overload induces apoptosis in cardiomyocytes and hepatocytes via mitochondrial/caspase-3 pathways and that TPO might exert a protective effect on iron-overload induced apoptosis via the activation of Akt and Erk1/2 pathways in cardiomyocytes.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3553-3553
Author(s):  
Mo Yang ◽  
Jian Liang Chen ◽  
Jie yu Ye ◽  
Su yi Li ◽  
En yu Liang ◽  
...  

Abstract Human cytomegalovirus (hCMV) infection is often associated with thrombocytopenia. Megakaryocytes may be one of the major sites of hCMV infection, then inducing this cell apoptosis. Angelica Sinensis (Danggui) is an important ingredient of many commonly used herbal Medicine for promoting blood production. Our previous study has showed that the hematopoietic effect of Angelica Sinensis is related to its constituent, angelica polysaccharide (APS) (Yang M et al, J Ethnopharma, 2009). This present study investigated the anti-apoptotic effect of APS and TPO on hCMV-induced apoptosis in megakaryocytes. Human bone marrow mononuclear cells (MNC) or megakaryocytic cell line CHRF-288-11 and hCMV AD169 strain were co-cultured in this study. hCMV significantly inhibited the formation of CFU-MK as shown in three different concentrations of viral infection groups (103, 104 and 105 pfu/ml), compared with blank control and mock control (n=10, P<0.05). hCMV also significantly inhibited the growth of CHRF cells in these three different concentrations after incubation for 3 days, which compared with control group (n=10, P<0.01). hCMV DNA and mRNA were also positively detected in CHRF cells and the cells of CFU-MK with IS-PCR and RT-PCR respectively, while it was negative in blank and mock control groups. We further studied the effect of APS and TPO on CFU-MK formation. Results showed that APS (50 ug/ml) like TPO (50 ng/ml) enhanced hCMV-reduced CFU-MK (P=0.05, n=6). CHRF cells were also analyzed by Annexin V/PI with flow cytometry at day 3 after infection with hCMV AD169. The percentage of apoptotic cells in group of 103 pfu/ml was 19.0 ± 2.0%; The group of 104 pfu/ml was 23.0 ± 1.5%; The group of 105 pfu/ml was 28.0 ± 3.0%. The control group was 2.0 ± 0.5%. The apoptotic cells were confirmed by morphologic observation. In addition, apoptotic signals from megakaryocytic surface, cytoplasma and mitochondria were detected in hCMV infected cells by flow cytometry with Caspase-3 and JC-1 assay. Compared to mock infection control at day 5, Annexin-V positive cells population increased by 58%; active caspase-3 signal increased by 120% in viable cell population; and cell population with damaged mitochondial membrane showed a 5-times increase. Moreover, the anti-apoptotic effect of APS and TPO on CHRF cells was also demonstrated by using Annexin-V assay. Our studies showed that hCMV induces the apoptosis in megakaryocytes via mitochondrial and caspase-3 signaling, and angelica polysaccharide (APS) like TPO has a protective effect on hCMV-induced apoptosis in these cells. Disclosures: No relevant conflicts of interest to declare.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Ming-Ju Hsieh ◽  
Shun-Fa Yang ◽  
Yih-Shou Hsieh ◽  
Tzy-Yen Chen ◽  
Hui-Ling Chiou

Extensive research results support the application of herbal medicine or natural food as an augment during therapy for various cancers. However, the effect of dioscin on tumor cells autophagy has not been clearly clarified. In this study, the unique effects of dioscin on autophagy of hepatoma cells were investigated. Results found that dioscin induced caspase-3- and -9-dependent cell apoptosis in a dose-dependent manner. Moreover, inhibition of ERK1/2 phosphorylation significantly abolished the dioscin-induced apoptosis. In addition, dioscin triggered cell autophagy in early stages. With autophagy inhibitors to hinder the autophagy process, dioscin-induced cell apoptosis was significantly enhanced. An inhibition of caspase activation did not affect the dioscin-induced LC3-II protein expression. Based on the results, we believed that while apoptosis was blocked, dioscin-induced autophagy process also diminished in Huh7 cells. In conclusion, this study indicates that dioscin causes autophagy in Huh7 cells and suggests that dioscin has a cytoprotective effect.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Xiaodan Xu ◽  
Hong Zhang ◽  
Ke Wang ◽  
Tao Tu ◽  
Yuan Jiang

Objective. To observe the protective effect of edaravone (Eda) on astrocytes after prolonged exposure to carbon monoxide (CO) and further to investigate the potential mechanisms of Eda against CO-induced apoptosis. Methods. The rat primary cultured astrocytes were cultured in vitro and exposed to 1% CO for 24 h after being cultured with different concentrations of Eda. MTT assay was used to detect the cytotoxicity of CO. Flow cytometry was used to detect the apoptosis rate, membrane potential of mitochondria, and ROS level. The mRNA and protein expressions of Bcl-2, Bax, and caspase-3 were assessed by real-time PCR and Western blotting analysis, respectively. Results. Eda can significantly suppress cytotoxicity of CO, and it can significantly increase membrane potential of mitochondria and Bcl-2 expressions and significantly suppress the apoptosis rate, ROS level, Bax, and caspase-3 expressions. Conclusion. Eda protects against CO-induced apoptosis in rat primary cultured astrocytes through decreasing ROS production and subsequently inhibiting mitochondrial apoptosis pathway.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Wen-Jia Chen ◽  
Lin-Xi Wang ◽  
Yan-Ping Wang ◽  
Zhou Chen ◽  
Xiao-Ying Liu ◽  
...  

Objectives.This study aimed to explore the effect of exendin-4 on t-BHP-induced apoptosis in pancreaticβcells and the mechanism of action.Methods.Murine MIN6 pancreaticβcells were treated with exendin-4 in the presence or absence of tert-butyl hydroperoxide (t-BHP). Cell survival was assessed by MTT staining. The percentage of apoptotic cells was determined by fluorescence microscopy analysis after Hoechst/PI staining and flow cytometric assay after Annexin V-FITC/PI staining. The activity of caspase-3 was determined using a caspase-3 activity kit. Expression of P-IRE1α, IRE1α, C-Jun N-terminal kinase (JNK), P-JNK, C-JUN, and P-C-JUN was detected by western blotting.Results.Exendin-4 was found to inhibit t-BHP-induced apoptosis in pancreaticβ-cells by downregulating caspase-3 activity. Exendin-4 also inhibited the endoplasmic reticulum transmembrane protein IRE1, the apoptosis-related signaling molecule JNK, and c-Jun activation.Conclusions.Our findings suggest that exendin-4 ultimately reduces t-BHP-inducedβ-cell apoptosis. IRE1-JNK-c-Jun signaling is involved in the exendin-4-mediated modulation ofβ-cell apoptosis.


Author(s):  
Weilan Lan ◽  
Jinyan Zhao ◽  
Wujin Chen ◽  
Haixia Shang ◽  
Jun Peng ◽  
...  

Background: Anlotinib is a multi-target tyrosine kinase inhibitor that has been reported to have activity against colorectal cancer. However, the mechanisms of how anlotinib mediates drug-resistance of colorectal cancer have not been fully described. Particularly the potential mechanisms regarding to the inhibition of proliferation and induction of apoptosis remain unknown. Objective: In this study, we intended to study the effect and related-mechanism of the proliferation, migration, invasion and induced apoptosis of anlotinib overcoming multidrug resistant colorectal cancer cells through in vitro experiments. Methods: Cell viability was determined by MTT assays and the resistant index was calculated. Colony formation and PI/RNase Staining were used for testing the proliferation of resistant cells. DAPI staining and Annexin V-FITC/PI staining were used to detect cell apoptosis. Migration and invasion were examined by transwell. Protein expression and activation of PI3K/AKT pathway were detected by western blot. LY294002 was used to verify whether anlotinib overcomes the drug-resistance of CRC cells by inactivating the PI3K/AKT pathway. Results: The results showed that the HCT-8/5-FU cells were resistant to multiple chemotherapy drugs (5-FU, ADM and DDP). Anlotinib significantly inhibited the cell viability, proliferation, migration, invasion and induced the cell apoptosis. Moreover, anlotinib downregulated the expression of survivin, cyclin D1, CDK4, caspase-3, Bcl-2, MMP-2, MMP-9, vimentin and N-cadherin, but up-regulated cleaved-caspase-3, Bax and E-cadherin and blocked the activity of the PI3K/AKT in HCT-8/5-FU cells. We found anlotinib and LY294002 overcame the drug resistance of HCT-8/5-FU cells by reducing the expression of PI3K/p-AKT. Conclusions: Anlotinib inhibited the proliferation, migration, invasion and induced apoptosis of HCT-8/5-FU cells, and the mechanisms may be that anlotinib conquered multidrug resistance of colorectal cancer cells via inactivating of PI3K/AKT pathway.


Sign in / Sign up

Export Citation Format

Share Document