scholarly journals Advances in the Use of Stem Cells in Veterinary Medicine: From Basic Research to Clinical Practice

Scientifica ◽  
2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Melissa Medeiros Markoski

Today, several veterinary diseases may be treated with the administration of stem cells. This is possible because these cells present a high therapeutic potential and may be injected as autologous or allogenic, freshly isolated, or previously cultured. The literature supports that the process is safe and brings considerable benefits to animal health. Knowledge about how adult stem cells modulate the molecular signals to activate cell homing has also been increasingly determined, evidencing the mechanisms which enable cells to repair and regenerate injured tissues. Preclinical studies were designed for many animal models and they have contributed to the translation to the human clinic. This review shows the most commonly used stem cell types, with emphasis on mesenchymal stem cells and their mechanistic potential to repair, as well as the experimental protocols, studied diseases, and species with the highest amount of studies and applications. The relationship between stem cell protocols utilized on clinics, molecular mechanisms, and the physiological responses may offer subsidies to new studies and therefore improve the therapeutic outcome for both humans and animals.

2004 ◽  
pp. U7-12 ◽  
Author(s):  
C Mummery

Stem cell research holds the promise of treatments for many disorders resulting from disease or trauma where one or at most a few cell types have been lost or do not function. In combination with tissue engineering, stem cells may represent the greatest contribution to contemporary medicine of the present century. Progress is however being hampered by the debate on the origin of stem cells, which can be derived from human embryos and some adult tissues. Politics, religious beliefs and the media have determined society's current perception of their relative value while the ethical antipathy towards embryonic stem cells, which require destruction of a human embryo for their derivation, has in many countries biased research towards adult stem cells. Many scientists believe this bias may be premature and basic research on both cell types is still required. The media has created confusion about the purpose of stem cell research: treating chronic ailments or striving for immortality. Here, the scientific state of the art on adult and embryonic stem cells is reviewed as a basis for a debate on whether research on embryonic stem cells is ethically acceptable.


2012 ◽  
Vol 90 (3) ◽  
pp. 337-351 ◽  
Author(s):  
Serkan Durdu ◽  
Gunseli Cubukcuoglu Deniz ◽  
Arin Dogan ◽  
Cagin Zaim ◽  
Aynur Karadag ◽  
...  

Recent increase in the interest in stem and progenitor cells may be attributed to their behavioural characteristics. A consensus has been reached that embryonic or adult stem cells have therapeutic potential. As cardiovascular health issues are still the major culprits in many developed countries, stem and progenitor cell driven approaches may give the clinicians a new arsenal to tackle many significant health issues. However, stem and progenitor cell mediated cardiovascular regeneration can be achieved via complex and dynamic molecular mechanisms involving a variety of cells, growth factors, cytokines, and genes. Functional contributions of transplanted cells on target organs and their survival are still critical problems waiting to be resolved. Moreover, the regeneration of contracting myocardial tissue has controversial results in human trials. Thus, moderately favourable clinical results should be interpreted carefully. Determining the behavioural programs, genetic and transcriptional control of stem cells, mechanisms that determine cell fate, and functional characteristics are the primary targets. In addition, ensuring the long-term follow-up of cells with efficient imaging techniques in human clinical studies may provide a resurgence of the initial enthusiasm, which has faded over time. Here, we provide a brief historical perspective on stem cell driven cardiac regeneration and discuss cardiac and vascular repair in the context of translational science.


Cells ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 255 ◽  
Author(s):  
Miruna Mihaela Micheu ◽  
Alina Ioana Scarlatescu ◽  
Alexandru Scafa-Udriste ◽  
Maria Dorobantu

Despite significant progress in treating ischemic cardiac disease and succeeding heart failure, there is still an unmet need to develop effective therapeutic strategies given the persistent high-mortality rate. Advances in stem cell biology hold great promise for regenerative medicine, particularly for cardiac regeneration. Various cell types have been used both in preclinical and clinical studies to repair the injured heart, either directly or indirectly. Transplanted cells may act in an autocrine and/or paracrine manner to improve the myocyte survival and migration of remote and/or resident stem cells to the site of injury. Still, the molecular mechanisms regulating cardiac protection and repair are poorly understood. Stem cell fate is directed by multifaceted interactions between genetic, epigenetic, transcriptional, and post-transcriptional mechanisms. Decoding stem cells’ “panomic” data would provide a comprehensive picture of the underlying mechanisms, resulting in patient-tailored therapy. This review offers a critical analysis of omics data in relation to stem cell survival and differentiation. Additionally, the emerging role of stem cell-derived exosomes as “cell-free” therapy is debated. Last but not least, we discuss the challenges to retrieve and analyze the huge amount of publicly available omics data.


2021 ◽  
Vol 26 ◽  
pp. 169-191
Author(s):  
Emma E. Redfield ◽  
Erin K. Luciano ◽  
Monica J. Sewell ◽  
Lucas A. Mitzel ◽  
Isaac J. Sanford ◽  
...  

This study looks at the number of clinical trials involving specific stem cell types. To our knowledge, this has never been done before. Stem cell clinical trials that were conducted at locations in the US and registered on the National Institutes of Health database at ‘clinicaltrials.gov’ were categorized according to the type of stem cell used (adult, cancer, embryonic, perinatal, or induced pluripotent) and the year that the trial was registered. From 1999 to 2014, there were 2,357 US stem cell clinical trials registered on ‘clinicaltrials.gov,’ and 89 percent were from adult stem cells and only 0.12 percent were from embryonic stem cells. This study concludes that embryonic stem cells should no longer be used for clinical study because of their irrelevance, moral questions, and induced pluripotent stem cells.


2009 ◽  
Vol 58 (4) ◽  
pp. 301-308 ◽  
Author(s):  
Cristina A. Szigyarto ◽  
Paul Sibbons ◽  
Gill Williams ◽  
Mathias Uhlen ◽  
Su M. Metcalfe

Axotrophin/MARCH-7 was first identified in mouse embryonic stem cells as a neural stem cell gene. Using the axotrophin/MARCH-7 null mouse, we discovered profound effects on T lymphocyte responses, including 8-fold hyperproliferation and 5-fold excess release of the stem cell cytokine leukemia inhibitory factor (LIF). Our further discovery that axotrophin/MARCH-7 is required for targeted degradation of the LIF receptor subunit gp190 implies a direct role in the regulation of LIF signaling. Bioinformatics studies revealed a highly conserved RING-CH domain in common with the MARCH family of E3-ubiquitin ligases, and accordingly, axotrophin was renamed “MARCH-7.” To probe protein expression of human axotrophin/MARCH-7, we prepared antibodies against different domains of the protein. Each antibody bound its specific target epitope with high affinity, and immunohistochemistry cross-validated target specificity. Forty-eight human tissue types were screened. Epithelial cells stained strongly, with trophoblasts having the greatest staining. In certain tissues, specific cell types were selectively positive, including neurons and neuronal progenitor cells in the hippocampus and cerebellum, endothelial sinusoids of the spleen, megakaryocytes in the bone marrow, crypt stem cells of the small intestine, and alveolar macrophages in the lung. Approximately 20% of central nervous system neuropils were positive. Notably, axotrophin/MARCH-7 has an expression profile that is distinct from that of other MARCH family members. This manuscript contains online supplemental material at http://www.jhc.org . Please visit this article online to view these materials.


Blood ◽  
2012 ◽  
Vol 120 (11) ◽  
pp. 2174-2181 ◽  
Author(s):  
Hideo Ema ◽  
Toshio Suda

Abstract The niche microenvironment controls stem cell number, fate, and behavior. The bone marrow, intestine, and skin are organs with highly regenerative potential, and all produce a large number of mature cells daily. Here, focusing on adult stem cells in these organs, we compare the structures and cellular components of their niches and the factors they produce. We then define the niche as a functional unit for stem cell regulation. For example, the niche possibly maintains quiescence and regulates fate in stem cells. Moreover, we discuss our hypothesis that many stem cell types are regulated by both specialized and nonspecialized niches, although hematopoietic stem cells, as an exception, are regulated by a nonspecialized niche only. The specialized niche is composed of 1 or a few types of cells lying on the basement membrane in the epithelium. The nonspecialized niche is composed of various types of cells widely distributed in mesenchymal tissues. We propose that the specialized niche plays a role in local regulation of stem cells, whereas the nonspecialized niche plays a role in relatively broad regional or systemic regulation. Further work will verify this dual-niche model to understand mechanisms underlying stem cell regulation.


2021 ◽  
Author(s):  
Yun-Ruei Kao ◽  
Jiahao Chen ◽  
Rajni Kumari ◽  
Madhuri Tatiparthy ◽  
Yuhong Ma ◽  
...  

Bone marrow resident and rarely dividing haematopoietic stem cells (HSC) harbour an extensive self-renewal capacity to sustain life-long blood formation; albeit their function declines during ageing. Various molecular mechanisms confer stem cell identity, ensure long-term maintenance and are known to be deregulated in aged stem cells. How these programs are coordinated, particularly during cell division, and what triggers their ageing-associated dysfunction has been unknown. Here, we demonstrate that HSC, containing the lowest amount of cytoplasmic chelatable iron (labile iron pool) among hematopoietic cells, activate a limited iron response during mitosis. Engagement of this iron homeostasis pathway elicits mobilization and β-oxidation of arachidonic acid and enhances stem cell-defining transcriptional programs governed by histone acetyl transferase Tip60/KAT5. We further find an age-associated expansion of the labile iron pool, along with loss of Tip60/KAT5-dependent gene regulation to contribute to the functional decline of ageing HSC, which can be mitigated by iron chelation. Together, our work reveals cytoplasmic redox active iron as a novel rheostat in adult stem cells; it demonstrates a role for the intracellular labile iron pool in coordinating a cascade of molecular events which reinforces HSC identity during cell division and to drive stem cell ageing when perturbed. As loss of iron homeostasis is commonly observed in the elderly, we anticipate these findings to trigger further studies into understanding and therapeutic mitigation of labile iron pool-dependent stem cell dysfunction in a wide range of degenerative and malignant pathologies.


2021 ◽  
Author(s):  
Hui-Juan Lu ◽  
Juan Li ◽  
Guodong Yang ◽  
Cun-Jian Yi ◽  
Daping Zhang ◽  
...  

Circular RNAs (circRNAs) are a special class of endogenous RNAs with a wide variety of pathophysiological functions via diverse mechanisms, including transcription, miRNA sponge, protein sponge/decoy, and translation. Stem cells are pluripotent cells with unique properties of self-renewal and differentiation. Dysregulated circRNAs identified in various stem cell types can affect stem cell self-renewal and differentiation potential by manipulating stemness. However, the emerging roles of circRNAs in stem cells remain largely unknown. This review summarizes the major functions and mechanisms of action of circRNAs in stem cell biology and disease progression. We also highlight circRNAs-mediated common pathways in diverse stem cell types and discuss their diagnostic significance with respect to stem cell-based therapy.


Biology Open ◽  
2021 ◽  
Vol 10 (10) ◽  
Author(s):  
Aaron M. Savage ◽  
Ramiro Alberio ◽  
Andrew D. Johnson

ABSTRACT In vitro production of tissue-specific stem cells [e.g. haematopoietic stem cells (HSCs)] is a key goal of regenerative medicine. However, recent efforts to produce fully functional tissue-specific stem cells have fallen short. One possible cause of shortcomings may be that model organisms used to characterize basic vertebrate embryology (Xenopus, zebrafish, chick) may employ molecular mechanisms for stem cell specification that are not conserved in humans, a prominent example being the specification of primordial germ cells (PGCs). Germ plasm irreversibly specifies PGCs in many models; however, it is not conserved in humans, which produce PGCs from tissue termed germline-competent mesoderm (GLCM). GLCM is not conserved in organisms containing germ plasm, or even in mice, but understanding its developmental potential could unlock successful production of other stem cell types. GLCM was first discovered in embryos from the axolotl and its conservation has since been demonstrated in pigs, which develop from a flat-disc embryo like humans. Together these findings suggest that GLCM is a conserved basal trait of vertebrate embryos. Moreover, the immortal nature of germ cells suggests that immortality is retained during GLCM specification; here we suggest that the demonstrated pluripotency of GLCM accounts for retention of immortality in somatic stem cell types as well. This article has an associated Future Leaders to Watch interview with the author of the paper.


2017 ◽  
Vol 373 (1739) ◽  
pp. 20160494 ◽  
Author(s):  
Rumiko Kofuji ◽  
Yasushi Yagita ◽  
Takashi Murata ◽  
Mitsuyasu Hasebe

Stem cells self-renew and produce precursor cells that differentiate to become specialized cell types. Land plants generate several types of stem cells that give rise to most organs of the plant body and whose characters determine the body organization. The moss Physcomitrella patens forms eight types of stem cells throughout its life cycle. Under gametangium-inducing conditions, multiple antheridium apical stem cells are formed at the tip of the gametophore and each antheridium apical stem cell divides to form an antheridium. We found that the gametophore apical stem cell, which typically forms leaf and stem tissues, changes to become a new type of stem cell, which we term the antheridium initial stem cell. This antheridium initial stem cell produces multiple antheridium apical stem cells, resulting in a cluster of antheridia at the tip of gametophore. This is the first report of a land plant stem cell directly producing another type of stem cell during normal development. Notably, the antheridium apical stem cells are distally produced from the antheridium initial stem cell, similar to the root cap stem cells of vascular plants, suggesting the use of similar molecular mechanisms and a possible evolutionary relationship. This article is part of a discussion meeting issue ‘The Rhynie cherts: our earliest terrestrial ecosystem revisited’.


Sign in / Sign up

Export Citation Format

Share Document