scholarly journals Ethanol Extract of Mylabris phalerata Inhibits M2 Polarization Induced by Recombinant IL-4 and IL-13 in Murine Macrophages

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Hwan-Suck Chung ◽  
Bong-Seon Lee ◽  
Jin Yeul Ma

Mylabris phalerata (MP) is an insect used in oriental herbal treatments for tumor, tinea infections, and stroke. Recent studies have shown that tumor-associated macrophages (TAM) have detrimental roles such as tumor progression, angiogenesis, and metastasis. Although TAM has phenotypes and characteristics in common with M2-polarized macrophages, M1 macrophages have tumor suppression and immune stimulation effects. Medicines polarizing macrophages to M1 have been suggested to have anticancer effects via the modulation of the tumor microenvironment. In this line, we screened oriental medicines to find M1 polarizing medicines in M2-polarized macrophages. Among approximately 400 types of oriental medicine, the ethanol extract of M. phalerata (EMP) was the most proficient in increasing TNF-α secretion in M2-polarized macrophages and TAM. Although EMP enhanced the levels of an M1 cytokine (TNF-α) and a marker (CD86), it significantly reduced the levels of an M2 marker (arginase-1) in M2-polarized macrophages. In addition, EMP-treated macrophages increased the levels of M1 markers (Inos and Tnf-α) and reduced those of the enhanced M2 markers (Fizz-1, Ym-1, and arginase-1). EMP-treated macrophages significantly reduced Lewis lung carcinoma cell migration in a transwell migration assay and inhibited EL4-luc2 lymphoma proliferation. In our mechanism study, EMP was found to inhibit STAT3 phosphorylation in M2-polarized macrophages. These results suggest that EMP is effective in treating TAM-mediated tumor progression and metastasis.

2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Yi-Xin Jiang ◽  
Yan Chen ◽  
Yue Yang ◽  
Xiao-Xia Chen ◽  
Dan-Dan Zhang

Tumor-associated macrophages (TAMs) with M2 phenotype play an essential role in tumor microenvironment (TME) during the progression and development of numerous cancers and associated with poor prognosis. Thus, regulation of TAMs polarization emerged as a new strategy for tumor immune therapy. According to Traditional Chinese Medicine (TCM) theory, herbs with Qi-tonifying character are involved in improving the defense capacity of immune system. In this study, we screened extracts and ingredients from five Qi-tonifying herbs exhibiting an inhibitory effect on M2 polarization of murine macrophages RAW264.7 induced by IL-4 and IL-13. Among these candidates, total flavonoids from Glycyrrhiza Radix et Rhizoma (TFRG) and ethanol extract of Ginseng Radix et Rhizoma significantly inhibited the expression of Arginase-1 (Arg-1) (above 90% at 100μg/mL), one of the phenotype markers of M2 macrophages. The inhibition of total saponins of Ginseng Radix et Rhizoma, ethanol extract of Cordyceps, ethanol extract of Acanthopanacis senticosi Radix et Rhizoma Seu caulis, and ethanol extract of Astragali Radix reached above 50% at 100μg/mL. The inhibition of ingredients including glabridin, isoliquiritin apioside, lysionotin, cordycepin, astragaloside IV, and calycosin reached above 50% at 50μM. Then, we investigated the molecular mechanisms of TFRG. TFRG abolished the migration of murine breast cancer 4T1 stimulated by the conditioned medium from M2 macrophages (M2-CM). In addition to Arg-1, TFRG also antagonized the IL-4/13-mediated mRNA upregulation of the M2 markers including found in inflammatory zone 1 (FIZZ1), chitinase-3-like protein 3 (YM1), and mannose receptor (CD206) and upregulated the expression of inducible nitric oxide synthase (iNOS), one of the M1 markers. The further exploration showed that TFRG decreased the phosphorylation of STAT6 and increased the expression of miR-155. Our study provides a series of potential immune regulating natural products from five Qi-tonifying herbs on M2 phenotype. For instance, TFRG suppressed M2 polarization of macrophages partly by inactivating STAT6 pathway and enhanced the level of miR-155 to regulate the expressions of M1 and M2 markers.


2015 ◽  
Vol 35 (suppl_1) ◽  
Author(s):  
Jinglian Yan ◽  
Guodong Tie ◽  
Lyne Khair ◽  
Elena Filippova ◽  
Louis Messina

Rationale: People with Type 2 Diabetes Mellitus (T2DM) have a 25x higher risk of limb loss than non-diabetics due in large part to impaired wound healing. The mechanisms that cause impaired wound healing remain incompletely characterized. Objective: We hypothesize that T2DM impairs wound healing by epigenetic modifications in hematopoietic stem cells (HSC) that reduce their differentiation towards monocytes/macrophages and disrupts the balance in M1/M2 polarization during the three phases of wound healing. Methods and Results: Wounds were created on the back of mice. Wound healing was significantly slower in diabetic db/db than in WT mice. During the early inflammatory phase, db/db wounds exhibited a significant decrease in total macrophages and M1 macrophages. Then, total macrophages and M2 macrophages were decreased, while M1 macrophages increased in tissue formation phase. In the late tissue remodeling phase, total macrophages and M1 macrophages were persistently increased. The impaired wound healing phenotype of db/db mice was recapitulated in WT recipients which were resconstituted with db/db HSCs, demonstrating that the impaired differentiation of HSCs towards macrophages as well as their M1/M2 polarization was due to a cell autonomous mechanism. Epigenetic studies indicated that DNMT1-dependent hypermethylation of Notch1, Pu.1 and KLF4 in T2D HSCs was responsible for the impaired differentiation towards monocytes/macrophages as well as the skewed M1/M2 polarization. Knockdown of DNMT1 in HSCs from db/db mice transplanted into lethally irradiated WT mice led to improved wound healing by an increase in macrophage infiltration as well as a normalization of the M1/M2 polarization. Conclusion: This study indicates that the dynamic changes of macrophage concentration and M1/M2 polarization in wound healing are regulated at the level of HSCs. Moreover, T2DM impairs wound healing by inducing DNMT1-dependent reduction of HSCs’ differentiation towards macrophages and their M1/M2 polarization. This novel finding indicates that inflammation is regulated at the level of HSCs, which creates new opportunities to develop epigenetic modification related therapies for T2DM and potentially other conditions that result from dysinflammation.


2018 ◽  
Vol 29 (16) ◽  
pp. 1927-1940 ◽  
Author(s):  
Ran Li ◽  
Jean Carlos Serrano ◽  
Hao Xing ◽  
Tara A. Lee ◽  
Hesham Azizgolshani ◽  
...  

Tumor tissues are characterized by an elevated interstitial fluid flow from the tumor to the surrounding stroma. Macrophages in the tumor microenvironment are key contributors to tumor progression. While it is well established that chemical stimuli within the tumor tissues can alter macrophage behaviors, the effects of mechanical stimuli, especially the flow of interstitial fluid in the tumor microenvironment, on macrophage phenotypes have not been explored. Here, we used three-dimensional biomimetic models to reveal that macrophages can sense and respond to pathophysiological levels of interstitial fluid flow reported in tumors (∼3 µm/s). Specifically, interstitial flow (IF) polarizes macrophages toward an M2-like phenotype via integrin/Src-mediated mechanotransduction pathways involving STAT3/6. Consistent with this flow-induced M2 polarization, macrophages treated with IF migrate faster and have an enhanced ability to promote cancer cell migration. Moreover, IF directs macrophages to migrate against the flow. Since IF emanates from the tumor to the surrounding stromal tissues, our results suggest that IF could not only induce M2 polarization of macrophages but also recruit these M2 macrophages toward the tumor masses, contributing to cancer cell invasion and tumor progression. Collectively, our study reveals that IF could be a critical regulator of tumor immune environment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Takuya Oba ◽  
Norihiro Sato ◽  
Yasuhiro Adachi ◽  
Takao Amaike ◽  
Yuzan Kudo ◽  
...  

AbstractPancreatic ductal adenocarcinoma (PDAC) is characterised by dense desmoplasia and hypoxic microenvironment. Our previous reports demonstrated that hyaluronan (HA), especially low-molecular-weight HA, provides a favourable microenvironment for PDAC progression. However, the effect of hypoxia on HA metabolism remains unknown. Using quantitative real-time RT-PCR and western blot analysis, we analysed the changes in the expression of HA-synthesizing enzymes (HAS2 and HAS3) and HA-degrading enzymes (HYAL1, KIAA1199/CEMIP) in PDAC cell lines under hypoxic conditions. Hypoxia increased the mRNA and protein expression of KIAA1199, whereas it decreased HYAL1 expression. The expression of HAS3 was increased and HAS2 remained unchanged in response to hypoxia. The effect of KIAA1199 on hypoxia-induced cell migration was determined using a transwell migration assay and small-interfering RNA (siRNA). Hypoxia enhanced the migratory ability of PDAC cells, which was inhibited by KIAA1199 knockdown. We also used immunohistochemistry to analyse the protein expression of hypoxia inducible factor (HIF) 1α and KIAA1199 in PDAC tissues. There was a significant immunohistochemically positive correlation between KIAA1199 and HIF1α. These findings suggest that hypoxia-induced KIAA1199 expression may contribute to enhanced motility in PDAC.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
He Nie ◽  
Fangmei An ◽  
Jie Mei ◽  
Cheng Yang ◽  
Qiang Zhan ◽  
...  

Background. Mesenchymal stem cells (MSCs), with the powerful metabolic and functional supporting abilities for inflammatory diseases, may be an effective therapeutic strategy for acute liver failure (ALF). However, the efficacy of MSCs can still be promoted if pretreatment is applied to enhance their poor migration towards the damaged liver. The purpose of this study is to determine the effect of IL-1β pretreatment on the efficacy and homing ability of MSCs in ALF. Methods. MSCs were isolated by the whole bone marrow adherence method and characterized. The efficacy and homing ability of IL-1β-pretreated MSCs (Pre-MSCs) were examined in a rat ALF model and compared with that of MSCs and normal saline. Then, Western blot was performed to detect the c-Met and CXCR4 expression of MSCs and Pre-MSCs and followed by flow cytometry to detect the meaningful indicators. Finally, the migration abilities of different cells and different conditions were tested by the Transwell migration assay. Results. MSCs of ideal purity were successfully isolated and cultured. Comparing with MSCs, Pre-MSCs had significantly better efficacy on improving the survival rate and liver function of ALF rats. Further analyses of damaged liver tissues showed that IL-1β pretreatment significantly enhanced the efficacy of MSCs on suppressing liver necrosis. Besides, Pre-MSCs exhibited better effects in inhibiting apoptosis and activating proliferation. The results of tracing experiments with CM-Dil-labeled cells confirmed that more cells migrated to the damaged liver in the Pre-MSC group. In terms of mechanism, the CXCR4 expression was significantly enhanced by IL-1β pretreatment, and an increased migration ability towards SDF-1 that could be reversed by AMD3100 was found in Pre-MSCs. Conclusion. IL-1β pretreatment could enhance the homing ability of MSCs at least partially by increasing the expression of CXCR4 and further improve the efficacy of MSCs on ALF.


Nutrients ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3631
Author(s):  
Ketaki Gadkari ◽  
Urvi Kolhatkar ◽  
Rutu Hemani ◽  
Gisella Campanelli ◽  
Qing Cai ◽  
...  

Natural stilbenes have gained significant attention in the scientific community owing to their potential anticancer effects against prostate cancer. We recently reported that Gnetin C, a resveratrol (Res) dimer, demonstrated more potent inhibition of metastasis-associated protein 1/v-ets avian erythroblastosis virus E26 oncogene homolog 2 (MTA1/ETS2) axis in prostate cancer cell lines than other stilbenes. In this study, we investigated in vivo antitumor effects of Gnetin C in two doses (50 and 25 mg/kg, i.p.) using PC3M-Luc subcutaneous xenografts and compared these to Res and pterostilbene (Pter). We found that while vehicle-treated mice revealed rapid tumor progression, compounds-treated mice showed noticeable delay in tumor growth. Gnetin C in 50 mg/kg dose demonstrated the most potent tumor inhibitory effects. Gnetin C in 25 mg/kg dose exhibited tumor inhibitory effects comparable with Pter in 50 mg/kg dose. Consistent with the effective antitumor effects, Gnetin C-treated tumors showed reduced mitotic activity and angiogenesis and a significant increase in apoptosis compared to all the other groups. The data suggest that Gnetin C is more potent in slowing tumor progression in prostate cancer xenografts than Res or Pter. Taken together, we demonstrated, for the first time, that Gnetin C is a lead compound among stilbenes for effectively blocking prostate cancer progression in vivo.


Nutrients ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 2006
Author(s):  
Hyeongjoo Oh ◽  
Sin-Hye Park ◽  
Min-Kyung Kang ◽  
Yun-Ho Kim ◽  
Eun-Jung Lee ◽  
...  

Macrophage polarization has been implicated in the pathogenesis of metabolic diseases such as obesity, diabetes, and atherosclerosis. Macrophages responsiveness to polarizing signals can result in their functional phenotype shifts. This study examined whether high glucose induced the functional transition of M2 macrophages, which was inhibited by asaronic acid, one of purple perilla constituents. J774A.1 murine macrophages were incubated with 40 ng/mL interleukin (IL)-4 or exposed to 33 mM glucose in the presence of 1-20 μΜ asaronic acid. In macrophages treated with IL-4 for 48 h, asaronic acid further accelerated cellular induction of the M2 markers of IL-10, arginase-1, CD163, and PPARγ via increased IL-4-IL-4Rα interaction and activated Tyk2-STAT6 pathway. Asaronic acid promoted angiogenic and proliferative capacity of M2-polarized macrophages, through increasing expression of VEGF, PDGF, and TGF-β. In glucose-loaded macrophages, there was cellular induction of IL-4, IL-4 Rα, arginase-1, and CD163, indicating that high glucose skewed naïve macrophages toward M2 phenotypes via an IL-4-IL-4Rα interaction. However, asaronic acid inhibited M2 polarization in diabetic macrophages in parallel with inactivation of Tyk2-STAT6 pathway and blockade of GLUT1-mediated metabolic pathway of Akt-mTOR-AMPKα. Consequently, asaronic acid deterred functional induction of COX-2, CTGF, α-SMA, SR-A, SR-B1, and ABCG1 in diabetic macrophages with M2 phenotype polarity. These results demonstrated that asaronic acid allayed glucose-activated M2-phenotype shift through disrupting coordinated signaling of IL-4Rα-Tyk2-STAT6 in parallel with GLUT1-Akt-mTOR-AMPK pathway. Thus, asaronic acid has therapeutic potential in combating diabetes-associated inflammation, fibrosis, and atherogenesis through inhibiting glucose-evoked M2 polarization.


2013 ◽  
Vol 304 (7) ◽  
pp. F948-F957 ◽  
Author(s):  
Punithavathi Vilapakkam Ranganathan ◽  
Calpurnia Jayakumar ◽  
Ganesan Ramesh

Improper macrophage activation is pathogenically linked to various metabolic, inflammatory, and immune disorders. Therefore, regulatory proteins controlling macrophage activation have emerged as important new therapeutic targets. We recently demonstrated that netrin-1 regulates inflammation and infiltration of monocytes and ameliorates ischemia-reperfusion-induced kidney injury. However, it was not known whether netrin-1 regulates the phenotype of macrophages and the signaling mechanism through which it might do this. In this study, we report novel mechanisms underlying netrin-1's effects on macrophages using in vivo and in vitro studies. Overexpression of netrin-1 in spleen and kidney of transgenic mice increased expression of arginase-1, IL-4, and IL-13 and decreased expression of COX-2, indicating a phenotypic switch in macrophage polarization toward an M2-like phenotype. Moreover, flow cytometry analysis showed a significant increase in mannose receptor-positive macrophages in spleen compared with wild type. In vitro, netrin-1 induced the expression of M2 marker expression in bone marrow-derived macrophages, peritoneal macrophages, and RAW264.7 cells, and suppressed IFNγ-induced M1 polarization and production of inflammatory mediators. Adoptive transfer of netrin-1-treated macrophages suppressed inflammation and kidney injury against ischemia-reperfusion. Netrin-1 activated PPAR pathways and inhibition of PPAR activation abolished netrin-1-induced M2 polarization and suppression of cytokine production. Consistent with in vitro studies, administration of PPAR antagonist to mice abolished the netrin-1 protective effects against ischemia-reperfusion injury of the kidney. These findings illustrate that netrin-1 regulates macrophage polarization through PPAR pathways and confers anti-inflammatory actions in inflammed kidney tissue.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Hong Zhang ◽  
Dan Zheng ◽  
Zhi-Jie Ding ◽  
Yuan-Zhi Lao ◽  
Hong-Sheng Tan ◽  
...  

Abstract A UPLC-PDA-QTOFMS-guided isolation strategy was employed to screen and track potentially new compounds from Garcinia oblongifolia. As a result, two new prenylated xanthones, oblongixanthones D and E (1–2), six new prenylated benzoylphloroglucinol derivatives, oblongifolins V–Z (3–7) and oblongifolin AA (8), as well as a known compound oblongifolin L (9), were isolated from the EtOAc-soluble fraction of an acetone extract of the leaves of Garcinia oblongifolia guided by UPLC-PDA-QTOFMS analysis. The structures of the new compounds were elucidated by 1D- and 2D-NMR spectroscopic analysis and mass spectrometry. Experimental and calculated ECD spectra were used to determine the absolute configurations. The results of wound healing and transwell migration assay showed that oblongixanthones D (1), E (2), and oblongifolin L (9) have the ability to inhibit cancer cell migration in lower cytotoxic concentrations. Western blotting results showed that these compounds exhibited an anti-metastasis effect mainly through downregulating RAF protein levels. In addition, 2 and 9 could inhibit phospho-MEK and phospho-ERK at downstream. Moreover, 1, 2, and 9 could inhibit snail protein level, suggesting that they could regulate the EMT pathway.


Sign in / Sign up

Export Citation Format

Share Document