scholarly journals Chaperone-Based Therapies for Disease Modification in Parkinson’s Disease

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Erik L. Friesen ◽  
Mitch L. De Snoo ◽  
Luckshi Rajendran ◽  
Lorraine V. Kalia ◽  
Suneil K. Kalia

Parkinson’s disease (PD) is the second most common neurodegenerative disorder and is characterized by the presence of pathological intracellular aggregates primarily composed of misfolded α-synuclein. This pathology implicates the molecular machinery responsible for maintaining protein homeostasis (proteostasis), including molecular chaperones, in the pathobiology of the disease. There is mounting evidence from preclinical and clinical studies that various molecular chaperones are downregulated, sequestered, depleted, or dysfunctional in PD. Current therapeutic interventions for PD are inadequate as they fail to modify disease progression by ameliorating the underlying pathology. Modulating the activity of molecular chaperones, cochaperones, and their associated pathways offers a new approach for disease modifying intervention. This review will summarize the potential of chaperone-based therapies that aim to enhance the neuroprotective activity of molecular chaperones or utilize small molecule chaperones to promote proteostasis.

Author(s):  
W.R. Wayne Martin ◽  
Marguerite Wieler

Parkinson's disease is a progressive neurodegenerative disorder that demands a holistic approach to treatment. Both pharmacologic and nonpharmacologic interventions play an important role in the comprehensive management of this disorder. While levodopa remains the single most effective medication for symptomatic treatment, dopamine agonists are playing an increasingly important role. Motor complications of dopaminergic therapy are a significant issue, particularly in patients with more advanced disease who have been on levodopa for several years. All therapeutic interventions must be tailored to the individual and modified as the disease progresses, with the goal of minimizing significant functional disability as much as possible.


Author(s):  
Vignayanandam R. Muddapu ◽  
V. Srinivasa Chakravarthy

ABSTRACTParkinson’s disease (PD) is a neurodegenerative disorder caused by loss of dopaminergic neurons in Substantia Nigra pars compacta (SNc). Although the exact cause of the cell death is not clear, the hypothesis that metabolic deficiency is a key facor has been gaining attention in the recent years. In the present study, we investigate this hypothesis using a multi-scale computational model of the subsystem of the basal ganglia comprising Subthalamic Nucleus (STN), Globus Pallidus externa (GPe) and SNc. The model is a multiscale model in that interactions among the three nuclei are simulated using more abstract Izhikevich neuron models, while the molecular pathways involved in cell death of SNc neurons are simulated in terms of detailed chemical kinetics. Simulation results obtained from the proposed model showed that energy deficiencies occurring at cellular and network levels could precipitate the excitotoxic loss of SNc neurons in PD. At the subcellular level, the models show how calcium elevation leads to apoptosis of SNc neurons. The therapeutic effects of several neuroprotective interventions are also simulated in the model. From neuroprotective studies, it was clear that glutamate inhibition and apoptotic signal blocker therapies were able to halt the progression of SNc cell loss when compared to other therapeutic interventions, which only slows down the progression of SNc cell loss.


2020 ◽  
Vol 21 (17) ◽  
pp. 6235
Author(s):  
Tapan Behl ◽  
Gagandeep Kaur ◽  
Simona Bungau ◽  
Rishabh Jhanji ◽  
Arun Kumar ◽  
...  

Current pharmacotherapy of Parkinson’s disease (PD) is symptomatic and palliative, with levodopa/carbidopa therapy remaining the prime treatment, and nevertheless, being unable to modulate the progression of the neurodegeneration. No available treatment for PD can enhance the patient’s life-quality by regressing this diseased state. Various studies have encouraged the enrichment of treatment possibilities by discovering the association of the effects of the endocannabinoid system (ECS) in PD. These reviews delineate the reported evidence from the literature on the neuromodulatory role of the endocannabinoid system and expression of cannabinoid receptors in symptomatology, cause, and treatment of PD progression, wherein cannabinoid (CB) signalling experiences alterations of biphasic pattern during PD progression. Published papers to date were searched via MEDLINE, PubMed, etc., using specific key words in the topic of our manuscript. Endocannabinoids regulate the basal ganglia neuronal circuit pathways, synaptic plasticity, and motor functions via communication with dopaminergic, glutamatergic, and GABAergic signalling systems bidirectionally in PD. Further, gripping preclinical and clinical studies demonstrate the context regarding the cannabinoid compounds, which is supported by various evidence (neuroprotection, suppression of excitotoxicity, oxidative stress, glial activation, and additional benefits) provided by cannabinoid-like compounds (much research addresses the direct regulation of cannabinoids with dopamine transmission and other signalling pathways in PD). More data related to endocannabinoids efficacy, safety, and pharmacokinetic profiles need to be explored, providing better insights into their potential to ameliorate or even regress PD.


2020 ◽  
Vol 4 (2) ◽  
Author(s):  
Martina Mazzocchi ◽  
Louise M Collins ◽  
Aideen M. Sullivan ◽  
Gerard W. O'Keeffe

Abstract Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterised by specific motor impairments. The neuropathological hallmarks of PD include progressive degeneration of midbrain dopaminergic neurons, and loss of their axonal projections to the striatum. Additionally, there is progressive accumulation and spread of intracellular aggregates of α-synuclein. Although dopamine-replacement pharmacotherapy can treat PD symptoms in the short-term, there is a critical need for the development of disease-modifying therapies based on an understanding of the underlying disease mechanisms. One such mechanism is histone acetylation, which is a common epigenetic modification that alters gene transcription. A number of studies have described alterations in histone acetylation in the brains of PD patients. Moreover, α-synuclein accumulation has been linked to alterations in histone acetylation and pharmacological strategies aimed at modulating histone acetylation are under investigation as novel approaches to disease modification in PD. Currently, such strategies are focused predominantly on pan-inhibition of histone deacetylase (HDAC) enzymes. Inhibition of specific individual HDAC enzymes is a more targeted strategy that may allow for future clinical translation. However, the most appropriate class of HDACs that should be targeted for neuroprotection in PD is still unclear. Recent work has shed new light on the role of class-II HDACs in dopaminergic degeneration. For this reason, here we describe the regulation of histone acetylation, outline the evidence for alterations in histone acetylation in the PD brain, and focus on the roles of class II HDACs and the potential of class-II HDAC inhibition as a therapeutic approach for neuroprotection in PD.


2021 ◽  
Vol 18 ◽  
Author(s):  
Ahsas Goyal ◽  
Aanchal Verma ◽  
Neetu Agrawal

: Parkinson’s disease (PD) is a neurodegenerative disorder characterized by progressive damage of mesencephalic dopaminergic neurons of the substantia nigra and the striatal projections. Recent studies suggest that estrogen and estrogen-like chemicals have beneficial effects on neurodegenerative diseases, particularly PD. Animal studies demonstrate that estrogen influences dopamine’s synthesis, release, and metabolism. In vivo studies have also shown the significant beneficial effects of estrogen in shielding the brain from neurodegenerative processes like PD. Moreover, the expression and function of dopamine receptors can be modified by estrogen. Phytoestrogens are non-steroidal compounds derived from plants present in a large spectrum of foods, most specifically soy, and in numerous dietary supplements. Phytoestrogens share structural and functional similarities with 17β-estradiol and can be used as an alternative treatment for PD because of estrogen’s undesirable effects, such as the increased risk of breast and endometrial cancer, ischemic disorders, and irregular bleeding. Despite the beneficial effects of phytoestrogens, their impact on human health may depend on age, health status, and even the presence or absence of specific gut microflora. In addition to their antioxidant properties, soy products or phytoestrogens also exhibit neuroprotective activity in patients with PD via interaction with estrogen receptors (ER) α and β, with a higher affinity for ERβ. Phytoestrogens offer a valuable model for fully exploring the biological effects of endocrine disruptors in general. However, observational studies and randomized controlled trials in humans have resulted in inconclusive findings within this domain. This review considered the evidence in animal models and human epidemiological data as to whether developmental exposure to various phytoestrogen classes adversely or beneficially impacts the neurobehavioral programming in PD.


2021 ◽  
Vol 11 (10) ◽  
pp. 1030
Author(s):  
Mohammad Dehestani ◽  
Hui Liu ◽  
Thomas Gasser

Parkinson’s disease (PD) is the second most common neurodegenerative disorder characterized by the loss of dopaminergic neurons. The vast majority of PD patients develop the disease sporadically and it is assumed that the cause lies in polygenic and environmental components. The overall polygenic risk is the result of a large number of common low-risk variants discovered by large genome-wide association studies (GWAS). Polygenic risk scores (PRS), generated by compiling genome-wide significant variants, are a useful prognostic tool that quantifies the cumulative effect of genetic risk in a patient and in this way helps to identify high-risk patients. Although there are limitations to the construction and application of PRS, such as considerations of limited genetic underpinning of diseases explained by SNPs and generalizability of PRS to other populations, this personalized risk prediction could make a promising contribution to stratified medicine and tailored therapeutic interventions in the future.


2020 ◽  
Author(s):  
Depanjan Sarkar ◽  
Drupad Trivedi ◽  
Eleanor Sinclair ◽  
Sze Hway Lim ◽  
Caitlin Walton-Doyle ◽  
...  

Parkinson’s disease (PD) is the second most common neurodegenerative disorder for which identification of robust biomarkers to complement clinical PD diagnosis would accelerate treatment options and help to stratify disease progression. Here we demonstrate the use of paper spray ionisation coupled with ion mobility mass spectrometry (PSI IM-MS) to determine diagnostic molecular features of PD in sebum. PSI IM-MS was performed directly from skin swabs, collected from 34 people with PD and 30 matched control subjects as a training set and a further 91 samples from 5 different collection sites as a validation set. PSI IM-MS elucidates ~ 4200 features from each individual and we report two classes of lipids (namely phosphatidylcholine and cardiolipin) that differ significantly in the sebum of people with PD. Putative metabolite annotations are obtained using tandem mass spectrometry experiments combined with accurate mass measurements. Sample preparation and PSI IM-MS analysis and diagnosis can be performed ~5 minutes per sample offering a new route to for rapid and inexpensive confirmatory diagnosis of this disease.


2019 ◽  
pp. 158-173

Background: Parkinson’s disease (PD) is a progressive neurodegenerative disorder caused by a dopamine deficiency that presents with motor symptoms. Visual disorders can occur concomitantly but are frequently overlooked. Deep brain stimulation (DBS) has been an effective treatment to improve tremors, stiffness and overall mobility, but little is known about its effects on the visual system. Case Report: A 75-year-old Caucasian male with PD presented with longstanding binocular diplopia. On baseline examination, the best-corrected visual acuity was 20/25 in each eye. On observation, he had noticeable tremors with an unsteady gait. Distance alternating cover test showed exophoria with a right hyperphoria. Near alternating cover test revealed a significantly larger exophoria accompanied by a reduced near point of convergence. Additional testing with a 24-2 Humphrey visual field and optical coherence tomography (OCT) of the nerve and macula were unremarkable. The patient underwent DBS implantation five weeks after initial examination, and the device was activated four weeks thereafter. At follow up, the patient still complained of intermittent diplopia. There was no significant change in the manifest refraction or prism correction. On observation, the patient had remarkably improved tremors with a steady gait. All parameters measured were unchanged. The patient was evaluated again seven months after device activation. Although vergence ranges at all distances were improved, the patient was still symptomatic for intermittent diplopia. OCT scans of the optic nerve showed borderline but symmetric thinning in each eye. All other parameters measured were unchanged. Conclusion: The case found no significant changes on ophthalmic examination after DBS implantation and activation in a patient with PD. To the best of the authors’ knowledge, there are no other cases in the literature that investigated the effects of DBS on the visual system pathway in a patient with PD before and after DBS implantation and activation.


2019 ◽  
Vol 26 (20) ◽  
pp. 3719-3753 ◽  
Author(s):  
Natasa Kustrimovic ◽  
Franca Marino ◽  
Marco Cosentino

:Parkinson’s disease (PD) is the second most common neurodegenerative disorder among elderly population, characterized by the progressive degeneration of dopaminergic neurons in the midbrain. To date, exact cause remains unknown and the mechanism of neurons death uncertain. It is typically considered as a disease of central nervous system (CNS). Nevertheless, numerous evidence has been accumulated in several past years testifying undoubtedly about the principal role of neuroinflammation in progression of PD. Neuroinflammation is mainly associated with presence of activated microglia in brain and elevated levels of cytokine levels in CNS. Nevertheless, active participation of immune system as well has been noted, such as, elevated levels of cytokine levels in blood, the presence of auto antibodies, and the infiltration of T cell in CNS. Moreover, infiltration and reactivation of those T cells could exacerbate neuroinflammation to greater neurotoxic levels. Hence, peripheral inflammation is able to prime microglia into pro-inflammatory phenotype, which can trigger stronger response in CNS further perpetuating the on-going neurodegenerative process.:In the present review, the interplay between neuroinflammation and the peripheral immune response in the pathobiology of PD will be discussed. First of all, an overview of regulation of microglial activation and neuroinflammation is summarized and discussed. Afterwards, we try to collectively analyze changes that occurs in peripheral immune system of PD patients, suggesting that these peripheral immune challenges can exacerbate the process of neuroinflammation and hence the symptoms of the disease. In the end, we summarize some of proposed immunotherapies for treatment of PD.


2020 ◽  
Vol 26 (37) ◽  
pp. 4738-4746
Author(s):  
Mohan K. Ghanta ◽  
P. Elango ◽  
Bhaskar L. V. K. S.

Parkinson’s disease is a progressive neurodegenerative disorder of dopaminergic striatal neurons in basal ganglia. Treatment of Parkinson’s disease (PD) through dopamine replacement strategies may provide improvement in early stages and this treatment response is related to dopaminergic neuronal mass which decreases in advanced stages. This treatment failure was revealed by many studies and levodopa treatment became ineffective or toxic in chronic stages of PD. Early diagnosis and neuroprotective agents may be a suitable approach for the treatment of PD. The essentials required for early diagnosis are biomarkers. Characterising the striatal neurons, understanding the status of dopaminergic pathways in different PD stages may reveal the effects of the drugs used in the treatment. This review updates on characterisation of striatal neurons, electrophysiology of dopaminergic pathways in PD, biomarkers of PD, approaches for success of neuroprotective agents in clinical trials. The literature was collected from the articles in database of PubMed, MedLine and other available literature resources.


Sign in / Sign up

Export Citation Format

Share Document