scholarly journals Andrographolide Inhibits Inflammatory Cytokines Secretion in LPS-Stimulated RAW264.7 Cells through Suppression of NF-κB/MAPK Signaling Pathway

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Yu Li ◽  
Shengnan He ◽  
Jishun Tang ◽  
Nana Ding ◽  
Xiaoyan Chu ◽  
...  

Andrographolide, the main active component extracted from Andrographis paniculata (Burm.f.) Wall. ex Nees, exerts anti-inflammatory effects; however, the principal molecular mechanisms remain unclear. The objective of this study was to investigate the molecular mechanisms of Andrographolide in modifying lipopolysaccharide- (LPS-) induced signaling pathway in RAW264.7 cells. An in vitro model of inflammation was induced by LPS in mouse RAW264.7 cells in the presence of Andrographolide. The concentration and expression levels of proinflammatory cytokines were determined by an enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qRT-PCR), respectively. The nuclear level of NF-κB was measured by an electrophoretic mobility shift assay (EMSA). The expression levels of NF-κB, p38, ERK, and JNK were determined by western blot. Andrographolide dose-dependently inhibited the release and mRNA expression of TNF-α, IL-6, and IL-1β in LPS-stimulated RAW264.7 cells. The nuclear level of p65 protein was decreased in Andrographolide treatment group. Western blot analysis showed that Andrographolide suppressed LPS-induced NF-κB activation and the phosphorylation of IkBa, ERK1/2, JNK, and p38. These results suggest that Andrographolide exerts an anti-inflammatory effect by inhibiting the activation of NF-κB/MAPK signaling pathway and the induction of proinflammatory cytokines.

Author(s):  
Tao Yu ◽  
YanYan Xu ◽  
Tao Sun ◽  
Di Huang ◽  
Feng Cao ◽  
...  

Abstract Background The role of the m6A-binding protein YTHDC2 in the occurrence and development of colorectal cancer (CRC) is unclear. We aimed to explore the molecular mechanisms underlying this process and clarify the signaling pathway involved. Methods Firstly, the relationship between YTHDC2 and CRC in TCGA database was analyzed to identify relevant signaling pathways and biological processes. Then, western blot was used to analyze expression of YTHDC2 in HCT116 and Caco2 cells. After knockdown or overexpression of YTHDC2 in the above cells, RT-PCR and western blot were used to analyze p38MAPK, p-p38MAPK, and downstream apoptosis-related proteins in the MAPK signaling pathway. Flow cytometry was performed to detect changes in apoptosis. Results And the results were shown that the expression of YTHDC2 was significantly lower in tumor tissues than in normal tissues. Increased expression of YTHDC2 was associated with better overall survival among patients with CRC. Gene set enrichment analysis revealed that YTHDC2 regulates the MAPK signaling pathway. Flow cytometry revealed apoptosis was significantly reduced and enhanced in response to YTHDC2 knockdown and overexpression, respectively. There was no significant change in the expression of p38MAPK, while p-p38MAPK was significantly increased in response to overexpression and decreased in response to knockdown. Gene Expression Profiling Interactive Analysis showed apoptotic protein expression to be positively correlated with YTHDC2 expression, consistent with the results of RT-PCR and western blot. Conclusion In general, apoptosis of CRC cells is promoted by YTHDC2 via activation of the exogenous death receptor and endogenous mitochondrial apoptosis-related pathways in the p38MAPK signaling pathway.


2021 ◽  
Author(s):  
Jingjing Fan ◽  
Sitong Liu ◽  
Zhiyi Ai ◽  
Yiying Chen ◽  
Yonghong Wang ◽  
...  

Generally, ginsenosides have the physiological effect of an anti-inflammatory immunity.


Author(s):  
Xiaowen Chen ◽  
Jianli Chen

This study intended to investigate the effects of miR-3188 on breast cancer and to reveal the possible molecular mechanisms. miR-3188 was upregulated and TUSC5 was downregulated in breast cancer tissues and MCF-7 cells compared to normal tissue and MCF-10 cells. After MCF-7 cells were transfected with miR-3188 inhibitor, cell proliferation and migration were inhibited, whereas apoptosis was promoted. Luciferase reporter assay suggested that TUSC5 was a target gene of miR-3188. In addition, miR-3188 overexpression increased the p-p38 expression, while miR-3188 suppression decreased the p-p38 expression significantly. miR-3188 regulated breast cancer progression via the p38 MAPK signaling pathway. In conclusion, miR-3188 affects breast cancer cell proliferation, apoptosis, and migration by targeting TUSC5 and activating the p38 MAPK signaling pathway. miR-3188 may serve as a potential therapeutic agent for the treatment of breast cancer.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2937-2937
Author(s):  
Manujendra N Saha ◽  
Hua Jiang ◽  
Yijun Yang ◽  
Donna Reece ◽  
Hong Chang

Abstract Abstract 2937 Mutation of p53, a tumor suppressor protein, is relatively rare (∼10% in newly diagnosed patients) in multiple myeloma (MM). However, p53 mutations/deletions are important risk factors for predicting the resistant to chemotherapy and no treatment is currently available for this subgroup of patients. MIRA-1, a novel class of small molecules with the ability to restore wild type conformation and function to mutant p53, induces apoptosis in different types of solid tumors harboring mutant p53. However, its effect on MM cells is not known. In this study we examined the ability of MIRA-1 to induce cytotoxic and apoptotic response in MM cells and inhibit tumor growth in MM mouse xenograft model. In addition, we explored the molecular mechanisms of MIRA-1-induced apoptosis in MM cells. Treatment of MM cells with MIRA-1 resulted in a time- and dose-dependent decrease in survival and increase in apoptosis of MM cells harboring either wild type (MM.1S, H929) or mutant (U266, 8226, and LP1) p53 suggesting that MIRA-induced apoptosis in MM cells is independent of p53 status. The IC50 of MIRA-1 observed in these cells was ranged between 10 and 15 μM. In addition, MIRA-1 elicited a dose-dependent inhibition of myeloma cell growth in seven primary MM samples with an average IC50of 10 μM. Two of the seven patient samples harbors p53 mutations/deletions. In contrast, MIRA-1 did not have a significant inhibitory effect on the survival of bone marrow or peripheral blood mononuclear cells obtained from three healthy donors at the concentrations (10–20 μM) that induced apoptosis of MM cells, indicating a preferential killing of myeloma cells by this drug. Apoptosis induced by MIRA-1 in MM cells harbouring either wild type or mutant p53 was associated with time- and dose-dependent activation of caspas-8, caspase-3 and PARP with subsequent up-regulation of a pro-apoptotic protein, Noxa and down-regulation of an anti-apoptotic protein, Mcl-1. Interestingly, MIRA-1 did not significantly modulate the level of p53 expression, although immunoprecipitation studies confirmed the restoration of wild type conformation of mutant p53 in LP1 and 8226 cells. Importantly, genetic knockdown of p53 using siRNA against wild type or mutant p53 had only a little effect on apoptosis induction by MIRA-1 in MM.1S or LP1 cells, respectively, confirming that apoptosis induction by MIRA-1 in MM cells is independent of p53. Furthermore, the combination of MIRA-1 with current anti-myeloma agents, dexamethasone or doxorubicin displayed synergistic cytotoxic response in MM.1S or LP1 cells (CI<1; p<0.05). To delineate the molecular mechanisms of apoptosis in MM cells induced by MIRA-1, we performed RT2 profiler PCR array analysis for the differential expression of 84 genes related to mitogen activated protein kinase (MAPK) signaling pathway. A significant number of genes of the MAPK family including MAP3K: MAP3K2 (MEKK2), MAP3K4 (MEKK4), PAK1; MAP2K: MAP2K5 (MEK5); and MAPK: MAPK11 (p38bMAPK) as well as transcription factors such as c-Jun, c-FOS, EGR1, and MKNK1, whose expression is induced by MAPK signaling, were up-regulated by more than 2-fold in MIRA-1-treated 8226 cells. On the other hand, expression of the scaffolding/anchoring genes, MAPK8IP2 (JIP-1) was down-regulated by ∼2-fold. Up-regulations of c-Jun, c-Fos, and EGR1 at their protein levels were further confirmed by Western blot analysis of MM.1S and 8226 cells treated with MIRA-1. Importantly, Western blot analysis revealed that treatment of MIRA-1 resulted in a time- and dose-dependent increase of phosphorylated p38 MAPK level in both MM.1S and 8226 cells. Taken together, our data indicates that activation of the MAPK signaling pathway is, at least in part, associated with MIRA-1-induced apoptosis of MM cells. Finally, we evaluated anti-tumorigenic potential of MIRA-1 in MM xenograft SCID mouse models. 8266 cells were inoculated into SCID mice and the mice received i.p. injections of either 100 μL PBS (control) or 10 mg/kg MIRA-1 once daily for 18 days after tumor formation was evident. Administration of MIRA-1 resulted in significant inhibition of tumor growth (p<0.05) and increase in survival (p=0.007) of the mice with no apparent toxicity. Our study for the first time demonstrates potent in vitro and in vivo anti-myeloma activity of MIRA-1 and thus providing a framework for clinical evaluation of MIRA-1 either alone or in combination with current anti-myeloma agents. Disclosures: Reece: Celgene: Consultancy, Honoraria, Research Funding; Janssen: Consultancy, Honoraria, Research Funding; Merck: Consultancy, Honoraria, Research Funding; Bristol Myers Squibb: Honoraria, Research Funding; Novartis: Honoraria, Research Funding; Otsuka: Honoraria, Research Funding; Millennium Pharmaceuticals: Research Funding.


2021 ◽  
Vol 11 ◽  
Author(s):  
Jie Zhang ◽  
Pinping Jiang ◽  
Shoyu Wang ◽  
Wenjun Cheng ◽  
Shilong Fu

Aims: A growing number of studies have unveiled that long non-coding RNA (lncRNA) is conductive to cervical cancer (CC) development. However, the effect of LIPE-AS1 is remained to be studied in CC.Main Methods: Reverse transcription-polymerase chain reaction (RT-PCR) was employed to measure LIPE-AS1 expression in CC tissues and the adjacent normal tissues. Additionally, we conducted gain- and loss-of functional experiments of LIPE-AS1 and adopted CCK8 assay, BrdU assay, and in vivo tumor formation experiment to test the proliferation of CC cells (HCC94 and HeLa). Besides, the apoptosis, invasion, and epithelial-mesenchymal transformation (EMT) of CC cells were estimated using flow cytometry, transwell assay, and western blot, respectively. Further, LIPE-AS1 downstream targets were analyzed through bioinformatics, and the binding relationships between LIPE-AS1 and miR-195-5p were verified via dual-luciferase activity experiment and RNA Protein Immunoprecipitation (RIP) assay. Moreover, rescue experiments were conducted to confirm the effects of LIPE-AS1 and miR-195-5p in regulating CC development and the expressions of MAPK signaling pathway related proteins were detected by RT-PCR, western blot, and immunofluorescence.Key Findings: LIPE-AS1 was over-expressed in CC tissues (compared to normal adjacent tissues) and was notably related to tumor volume, distant metastasis. Overexpressing LIPE-AS1 accelerated CC cell proliferation, migration and EMT, inhibited apoptosis; while LIPE-AS1 knockdown had the opposite effects. The mechanism studies confirmed that LIPE-AS1 sponges miR-195-5p as a competitive endogenous RNA (ceRNA), which targets the 3′-untranslated region (3′-UTR) of MAP3K8. LIPE-AS1 promoted the expression of MAP3K8 and enhanced ERK1/2 phosphorylation, which were reversed by miR-195-5p.Significance: LIPE-AS1 regulates CC progression through the miR-195-5p/MAPK signaling pathway, providing new hope for CC diagnosis and treatment.


2019 ◽  
Vol 39 (11) ◽  
Author(s):  
Qianjun Wang ◽  
Qianqian Yang ◽  
Ali Zhang ◽  
Zhiqiang Kang ◽  
Yingsheng Wang ◽  
...  

Abstract Heterotopic ossification (HO), the pathologic formation of extraskeletal bone, can be disabling and lethal. However, the underlying molecular mechanisms were largely unknown. The present study aimed to clarify the involvement of secreted protein acidic and rich in cysteine (SPARC) and the underlying mechanism in rat model of HO. The mechanistic investigation on roles of SPARC in HO was examined through gain- and loss-of-function approaches of SPARC, with alkaline-phosphatase (ALP) activity, mineralized nodules, and osteocalcin (OCN) content measured. To further confirm the regulatory role of SPARC, levels of mitogen-activated protein kinase (MAPK) signaling pathways-related proteins (extracellular signal-regulated kinase (ERK), c-jun N-terminal kinase (JNK), p38, nuclear factor κ-B (NF-κB), and IkB kinase β (IKKβ)) were determined. Bone marrow mesenchymal stem cells were treated with pathway inhibitor to investigate the relationship among SPARC, MAPK signaling pathway, and HO. The results suggested that SPARC expression was up-regulated in Achilles tendon tissues of HO rats. Silencing of SPARC could decrease phosphorylation of ERK, JNK, p38, NF-κB, and IKKβ. Additionally, silencing of SPARC or inhibition of MAPK signaling pathway could reduce the ALP activity, the number of mineralized nodules, and OCN content, thus impeding HO. To sum up, our study identifies the inhibitory role of SPARC gene silencing in HO via the MAPK signaling pathway, suggesting SPARC presents a potential target for HO therapy.


2019 ◽  
Author(s):  
Yeojin Hong ◽  
Thu Thao Pham ◽  
Jiae Lee ◽  
Hyun S. Lillehoj ◽  
Yeong Ho Hong

Abstract Background Defensins are antimicrobial peptides composed of three conserved disulfide bridges, a β-sheet, and both hydrophobic and cationic amino acids. In this study, we aimed to demonstrate the immunomodulation role of avian β-defensin 8 (AvBD8) in a chicken macrophage cell line.Results Chicken AvBD8 stimulated the expression of proinflammatory cytokines (interleukin (IL)-1β, interferon-γ, and IL-12p40) and chemokines (CCL4, CXCL13, and CCL20) in macrophages. Furthermore, by western blotting and immunocytochemistry, we confirmed that AvBD8 activated the mitogen-activated protein kinase (MAPK) signaling pathway via extracellular regulated kinases 1/2 (ERK1/2) and p38 signaling molecules.Conclusion Overall, AvBD8 plays a crucial role in host defense as not only an antimicrobial peptide, but also an immunomodulator by activating the MAPK signaling pathway and inducing the expression of proinflammatory cytokines and chemokines.


2021 ◽  
Vol 49 (5) ◽  
pp. 56-62
Author(s):  
Hongtao Chen ◽  
Li Zhang

Background and objective: Osteoarthritis is the most common chronic osteoarthrosis disease. There are complex factors that lead to osteoarthritis. Therefore, it is essential to investigate the molecular mechanism of osteoarthritis, especially the mechanism of articular cartilage degeneration. In this study, the mechanism of FPR1 (formyl peptide receptor 1) in LPS (lipopolysaccharide) induced chondrogenic cell ATDC5 was investigated.Materials and methods: We employed real-time quantitative polymerase chain reaction (RT-qPCR) and western blot assay to analyze the expression level of FPR1 in ATDC5 cell linesinduced by LPS at 0, 2.5, 5, and 10 μg/mL concentrations. Then we constructed the FPR1 knockdown plasmid to transfect the LPS-ATDC5. MTT assay was used to test cell viability in control, LPS, LPS+shNC and LPS+shFPR1 groups. ELISA and RT-qPCR assay were employed to examine the TNF-α (tumor necrosis factor-α)、IL-6 and IL-1β expression level. Flow cytometry and western blot assay were employed to analyze the apoptosis of LPS-ATDC5. Finally, we utilized the western blot assay to text related protein expression level of MAPK (mitogen-activated protein kinase) signaling pathway.Results: In this study, we found the expression level of FPR1 was increased in LPS-ATDC5, downregulation of FPR1 improves the survival rate and alleviates inflammatory response of LPS-ATDC5. Meanwhile, downregulation of FPR1 alleviates apoptosis of LPS-ATDC5. Finally, downregulation of FPR1 inhibits the MAPK signal pathway.Conclusion: Present study revealed that FPR1 was highly expressed in LPS-induced chondrocytes ATDC5, and the downregulation of FPR1 abated the inflammatory response and apoptosis of LPS-ATDC5 cells by regulating the MAPK signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document