scholarly journals Organic Extract of Justicia pectoralis Jacq. Leaf Inhibits Interferon-γ Secretion and Has Bacteriostatic Activity against Acinetobacter baumannii and Klebsiella pneumoniae

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Tiago Rafael de Sousa Nunes ◽  
Marina Ferraz Cordeiro ◽  
Fernanda Gomes Beserra ◽  
Matheus Landim de Souza ◽  
Wliana Alves Viturino da Silva ◽  
...  

Justicia pectoralis Jacq. (Acanthaceae) leaves currently found in the Brazilian north-east are widely used to treat diabetes, menstrual pains, asthma, and other disorders. This work aimed to identify the phytochemical characterization and biological activities of J. pectoralis leaf extracts. The plant material was ground and the crude extracts were obtained with water or acetone: water (7:3 v/v), yielding aqueous (JPA), and organic (JPO) extracts. Phytochemical characterization was performed by thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC). Cytotoxicity was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) assay and trypan blue (TB) exclusion assay in peripheral blood mononuclear cells (PBMCs), BALB/c splenocytes, and neoplastic cells (TOLEDO, K562, DU-145, and PANC-1) at 1, 10, and 100 μg/mL. Antibacterial activity was evaluated using the microdilution test to obtain the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). Cytokines, IFN-γ, and IL-17A from culture supernatants of BALB/c mice splenocytes were measured by sandwich ELISA. In the TLC analysis, both JPA and JPO extracts presented coumarin and flavonoids. In addition, HPLC was able to identify coumarin, apigenin, and ellagic acid in both extracts. JPO IC50 was 57.59 ± 1.03 μg/mL (MTT) and 69.44 ± 8.08 μg/mL (TB) in TOLEDO. MIC value of JPO against Acinetobacter baumannii and Klebsiella pneumoniae was 500 μg/mL. JPO (100 μg/mL) significantly inhibited IFN-γ levels (p=0.03). J. pectoralis is a potential candidate to be further investigated as an IFN-γ inhibitory agent and against Acinetobacter baumannii and Klebsiella pneumoniae.

2022 ◽  
Vol 82 ◽  
Author(s):  
M. F. Cordeiro ◽  
T. R. S. Nunes ◽  
F. G. Bezerra ◽  
P. K. M. Damasco ◽  
W. A. V. Silva ◽  
...  

Abstract Plectranthus barbatus Andrews (Lamiaceae) is widely distributed in the world and has a range of popular therapeutic indications. This work aimed to evaluate the phytochemical characterization of two leaf extracts of P. barbatus, and their antimicrobial, antineoplastic and immunomodulatory potential. After collection, herborization and obtainment of the P. barbatus aqueous extract (PBA) and acetone:water 7:3 P. barbatus organic extract (PBO), the phytochemical characterization was performed by high-performance liquid chromatography (HPLC). The antimicrobial activity was performed to determine the minimum inhibitory concentration (MIC) against eight bacterial strains using the microdilution test and the fungus Trichophyton rubrum by disc diffusion assay and microdilution test. Cytotoxicity was assessed by MTT and trypan blue methods in normal peripheral blood mononuclear cells (PBMCs) at concentrations ranged between 0.1 to 100 µg.mL-1 and in neoplastic cell lines Toledo, K562, DU-145 and PANC-1 at 1, 10 and 100 µg.mL-1 . Immunomodulatory activity, was evaluated by sandwich ELISA of proinflammatory cytokines at BALB/c mice splenocytes cultures supernatant. Both extracts presented flavonoids, cinnamic derivatives, steroids and ellagic acid. PBO showed bacteriostatic activity against Acinetobacter baumannii (MIC = 250 µg.mL-1) clinical isolate and PBA fungistatic activity against Trichophyton rubrum (MIC = 800 µg.mL-1). The extracts did not exhibit toxicity to PBMCs and neoplastic cells (IC50 > 100 µg.mL-1). Additionally, PBO at 100 µg.mL-1 significantly inhibited IFN-γ and IL-17A cytokines (p = 0.03). Plectranthus barbatus is a potential candidate for therapeutic use due to its low toxicity in healthy human cells and exhibits biological activities of medical interest as bacteriostatic, fungistatic and immunomodulatory.


2015 ◽  
Vol 35 (suppl_1) ◽  
Author(s):  
Terje Espevik ◽  
Siril S Bakke ◽  
Nathalie Niyonzima ◽  
Jan K Damås ◽  
Liv Ryan ◽  
...  

Atherosclerosis is an inflammatory condition and the underlying cause for cardiovascular disease. Cholesterol crystals (CC) are found to be abundant in atherosclerotic plaques and we have previously shown that CC initiate an inflammatory response via the complement system and inflammasome activation. Cyclic oligosaccharide 2-hydroxypropyl-β-cyclodextrin (BCD) is a compound that solubilizes lipophilic substances and is commonly used in pharmaceuticals or drug delivery. BCD is reported to increase cholesterol solubility and to promote the removal of cholesterol from foam cells. However, it remains unknown whether BCD has any effect on crystalline cholesterol. We here show that BCD attenuates the CC -induced inflammatory cytokine response as well as regulates a range of CC-related genes in human peripheral blood mononuclear cells. BCD binds to CC and prevents deposition of complement factors on CC in human plasma. Furthermore, BCD also decreases the formation of soluble terminal complement complex (TCC) and the expression of complement receptor 3 in response to CC stimulation in human whole blood. Induction of TCC by mono sodium urate crystals or zymosan was not affected by BCD. Of interest, after 1 hr of incubation, BCD is starting to dissolve the CC. These data demonstrate that BCD is a strong inhibitor of CC-induced inflammation, which might be explained by BCD-mediated attenuation of complement activation. These data suggest that BCD is a potential candidate for treatment of atherosclerosis.


Nutrients ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1673 ◽  
Author(s):  
Ivan Cruz-Chamorro ◽  
Nuria Álvarez-Sánchez ◽  
Guillermo Santos-Sánchez ◽  
Justo Pedroche ◽  
María-Soledad Fernández-Pachón ◽  
...  

Peptides from several plant food proteins not only maintain the nutritional values of the original protein and decrease the environmental impact of animal agriculture, but also exert biological activities with significant health-beneficial effects. Wheat is the most important food grain source in the world. However, negative attention on wheat-based products has arose due to the role of gluten in celiac disease. A controlled enzymatic hydrolysis could reduce the antigenicity of wheat gluten protein hydrolysates (WGPHs). Therefore, the aims of the present study were to evaluate the effects of the in vitro administration of Alcalase-generated WGPHs on the immunological and antioxidant responses of human peripheral blood mononuclear cells (PBMCs) from 39 healthy subjects. WGPH treatment reduced cell proliferation and the production of the Type 1 T helper (Th1) and Th17 pro-inflammatory cytokines IFN-γ and IL-17, respectively. WPGHs also improved the cellular anti-inflammatory microenvironment, increasing Th2/Th1 and Th2/Th17 balances. Additionally, WGPHs improved global antioxidant capacity, increased levels of the reduced form of glutathione and reduced nitric oxide production. These findings, not previously reported, highlight the beneficial capacity of these vegetable protein hydrolysates, which might represent an effective alternative in functional food generation.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Yue Sun ◽  
Wei Deng ◽  
Linyu Geng ◽  
Lu Zhang ◽  
Rui Liu ◽  
...  

Mesenchymal stem cells (MSCs) possess multipotent and immunomodulatory properties and are suggested to be involved in the pathogenesis of immune-related diseases. This study explored the function of bone marrow MSCs from rheumatoid arthritis (RA) patients, focusing on immunomodulatory effects. RA MSCs showed decreased proliferative activity and aberrant migration capacity. No significant differences were observed in cytokine profiles between RA and control MSCs. The effects of RA MSCs on proliferation of peripheral blood mononuclear cells (PBMCs) and distribution of specific CD4+T cell subtypes (Th17, Treg, and Tfh cells) were investigated. RA MSCs appeared to be indistinguishable from controls in suppressing PBMC proliferation, decreasing the proportion of Tfh cells, and inducing the polarization of Treg cells. However, the capacity to inhibit Th17 cell polarization was impaired in RA MSCs, which was related to the low expression of CCL2 in RA MSCs after coculture with CD4+T cells. These findings indicated that RA MSCs display defects in several important biological activities, especially the capacity to inhibit Th17 cell polarization. These functionally impaired MSCs may contribute to the development of RA disease.


2017 ◽  
Vol 43 (4) ◽  
pp. 1515-1525 ◽  
Author(s):  
Bailing Li ◽  
Wei Zhou ◽  
Xiaojun Tang ◽  
Wei Wang ◽  
Jiajun Pan ◽  
...  

Background/Aims: The imbalance of Treg/Th17 cells plays important role in the pathogenesis of dilated cardiomyopathy (DCM). Response gene to complement (RGC)-32 is a cell cycle regulator that plays an important role in cell proliferation. We evaluated whether the upregulation of RGC-32 was implicated in the homeostasis of Treg/Th17 cells in DCM. Methods: The levels of plasma RGC-32, IL-17 and TGF-β1, and the frequencies of circulating CD4+ RGC-32+ T cells, Th17 and Treg cells in patients with DCM were determined by Cytokine-specific sandwich ELISA and the flow cytometer (FCM), respectively. Results: A significant elevation of plasma RGC-32 in patients with DCM compared with healthy control (HC) subjects was observed. This upregulation was associated with an increase in frequency of Th17 and a decrease in frequency of Treg cells. To further assessed the role of RGC-32, we investigated the effects of RGC-32 up- or down-regulation on frequencies of Th17 and Treg cells in peripheral blood mononuclear cells (PBMCs) from subjects. Importantly, overexpression of RGC-32 was accompanied by an augmentation of Th17 and a reduction of Treg expression. Conclusion: In summary, our study demonstrated the up-regulation of RGC-32 contributed to the imbalance of Treg/Th17 cells in patients with DCM.


Author(s):  
Julia Sperlich ◽  
Nicole Teusch

Pseudopterosin, produced by the sea whip of the genus Antillogorgia, possesses a variety of promising biological activities including potent anti-inflammatory effects. However, few studies examined pseudopterosin in the treatment of cancer cells and, to our knowledge, the ability to inhibit triple negative breast cancer (TNBC) proliferation or invasion has not been explored. Thus, we evaluated the as yet unknown mechanism of action of pseudopterosin: Pseudopterosin was able to inhibit proliferation of TNBC. Interestingly, analyzing breast cancer cell proliferation after knocking down glucocorticoid receptor α (GRα) revealed that anti-proliferative effects of pseudopterosin were significantly inhibited when GRα expression was reduced. Furthermore, pseudopterosin inhibited invasion of MDA-MB-231 3D tumor spheroids embedded in an extracellular-like matrix. Remarkably, the knockdown of GRα in 3D tumor spheroids revealed increased ability of cells to invade the surrounding matrix. In a co-culture, encompassing peripheral blood mononuclear cells (PBMC) and MDA-MB-231 cells, production of interleukin 6 (IL-6) and interleukin 8 (IL-8) significantly increased compared to monoculture. Notably, pseudopterosin proved to block cytokine elevation, representing key players in tumor progression, in the co-culture. Thus, our results reveal pseudopterosin treatment as a potential novel approach in TNBC therapy.


Foods ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 457 ◽  
Author(s):  
Biancamaria Senizza ◽  
Gabriele Rocchetti ◽  
Murat Ali Okur ◽  
Gokhan Zengin ◽  
Evren Yıldıztugay ◽  
...  

In this work, the phytochemical profile and the biological properties of Colchicum triphyllum (an unexplored Turkish cultivar belonging to Colchicaceae) have been comprehensively investigated for the first time. Herein, we focused on the evaluation of the in vitro antioxidant and enzyme inhibitory effects of flower, tuber, and leaf extracts, obtained using different extraction methods, namely maceration (both aqueous and methanolic), infusion, and Soxhlet. Besides, the complete phenolic and alkaloid untargeted metabolomic profiling of the different extracts was investigated. In this regard, ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) allowed us to putatively annotate 285 compounds when considering the different matrix extracts, including mainly alkaloids, flavonoids, lignans, phenolic acids, and tyrosol equivalents. The most abundant polyphenols were flavonoids (119 compounds), while colchicine, demecolcine, and lumicolchicine isomers were some of the most widespread alkaloids in each extract analyzed. In addition, our findings showed that C. triphyllum tuber extracts were a superior source of both total alkaloids and total polyphenols, being on average 2.89 and 10.41 mg/g, respectively. Multivariate statistics following metabolomics allowed for the detection of those compounds most affected by the different extraction methods. Overall, C. triphyllum leaf extracts showed a strong in vitro antioxidant capacity, in terms of cupric reducing antioxidant power (CUPRAC; on average 96.45 mg Trolox Equivalents (TE)/g) and ferric reducing antioxidant power (FRAP) reducing power (on average 66.86 mg TE/g). Interestingly, each C. triphyllum methanolic extract analyzed (i.e., from tuber, leaf, and flower) was active against the tyrosinase in terms of inhibition, recording the higher values for methanolic macerated leaves (i.e., 125.78 mg kojic acid equivalent (KAE)/g). On the other hand, moderate inhibitory activities were observed against AChE and α-amylase. Strong correlations (p < 0.01) were also observed between the phytochemical profiles and the biological activities determined. Therefore, our findings highlighted, for the first time, the potential of C. triphhyllum extracts in food and pharmaceutical applications.


2002 ◽  
Vol 9 (2) ◽  
pp. 470-476 ◽  
Author(s):  
Narayanan Nair ◽  
Supriya Mahajan ◽  
Ram Chawda ◽  
Chithan Kandaswami ◽  
Thomas C. Shanahan ◽  
...  

ABSTRACT Although flavonoids manifest a diverse range of biological activities, including antitumor and antiviral effects, the molecular mechanisms underlying these activities await elucidation. We hypothesize that the flavonoid constituents of a proprietary grape seed extract (GSE) that contains procyandins exert significant antiviral and antitumor effects, by inducing production of the Th1-derived cytokine gamma interferon (IFN-γ) by peripheral blood mononuclear cells) from healthy donors. Our results show that GSE significantly induced the transcription of IFN-γ mRNA as demonstrated by reverse transcription-PCR but had no effect on the Th2-derived cytokine interleukin-6. The enhancing effect of GSE on IFN-γ expression was further supported by a concomitant increase in the number of cells with intracytoplasmic IFN-γ as well as the synthesis and secretion of IFN-γ. Our results demonstrate that the potentially beneficial immunostimulatory effects of GSE may be mediated through the induction of IFN-γ.


2007 ◽  
Vol 51 (8) ◽  
pp. 2948-2953 ◽  
Author(s):  
R. Bethell ◽  
J. De Muys ◽  
J. Lippens ◽  
A. Richard ◽  
B. Hamelin ◽  
...  

ABSTRACT Apricitabine is a novel deoxycytidine analogue reverse transcriptase inhibitor that is under development for the treatment of human immunodeficiency virus type 1 (HIV-1) infection. Apricitabine is phosphorylated to its active triphosphate by deoxycytidine kinase, which is also responsible for the intracellular phosphorylation of lamivudine (3TC) and emtricitabine (FTC); hence, in vitro studies were performed to investigate possible interactions between apricitabine and these agents. Human peripheral blood mononuclear cells (PBMC) were incubated for 24 h with various concentrations of 3H-labeled or unlabeled apricitabine, 3TC, or FTC. Intracellular concentrations of parent compounds and their phosphorylated derivatives were measured by high-performance liquid chromatography. In other experiments, viral reverse transcriptase activity was measured in PBMC infected with HIV-1 bearing M184V in the presence of various concentrations of apricitabine and 3TC. [3H]apricitabine and [3H]3TC were metabolized intracellularly to form mono-, di-, and triphosphates. 3TC and FTC (1 to 10 μM) produced concentration-dependent decreases in apricitabine phosphorylation; in contrast, apricitabine at concentrations of up to 30 μM had no effect on the phosphorylation of 3TC or FTC. The combination of apricitabine and 3TC reduced the antiviral activity of apricitabine against HIV-1: apricitabine concentrations producing 50% inhibition of viral reverse transcriptase were increased two- to fivefold in the presence of 3TC. These findings suggest that nucleoside reverse transcriptase inhibitors with similar modes of action may show biochemical interactions that affect their antiviral efficacy. It is therefore essential that potential interactions between combinations of new and existing agents be thoroughly investigated before such combinations are introduced into clinical practice.


Sign in / Sign up

Export Citation Format

Share Document