scholarly journals Thermal Cracking Analysis of Microbial Cemented Sand under Various Strains Based on the DEM

2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Yang Tang ◽  
Guobin Xu ◽  
Yue Yan ◽  
Dengfeng Fu ◽  
Chunlai Qu ◽  
...  

Microbial-induced calcite precipitation (MICP) is a novel ground improvement method to increase the strength and stiffness of sand. However, the influences of temperature load on the internal microstructure of microbial cemented sand (MCS) material under the experimented strain have always been a key concern for the extensive application. Three kinds of experiments, X-ray diffraction (XRD), X-ray computed tomography (XCT), and scanning electron microscopy (SEM), were conducted to explore the composition, shape, and bonding characteristics of physical assemblies in this paper. A precision DEM modelling of MCS, mainly composed of irregular particle modelling and a mesoparameter calibration algorithm, has been proposed for the thermal cracking analysis under various strains (i.e., 1.0‰–3.0‰). Research results indicate that three kinds of bonding (that is sand-calcite, calcite-calcite, and sand-sand) are present in the MCS material. The application of temperature has a superposition effect on the damage of MCS material with increasing strain. Moreover, as the heating duration gradually increases, the effect of thermal rupture produces a distinct quiet period. The length of thermal cracks in the transverse direction increases throughout the heating process.

2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Yue Yan ◽  
Yang Tang ◽  
Guobin Xu ◽  
Jijian Lian ◽  
Dengfeng Fu

Microbial-induced calcite precipitation (MICP) is a novel ground improvement method to effectively increase the strength of sandy soil. However, the relationship between the compressive strength of cemented sand and mesostructure of the cemented structure has not been addressed adequately. In this paper, a suite of microbial cementing experiments were conducted, considering multiple parameters controllable in testing. Twenty-two cementing columns were examined by uniaxial compressive strength (UCS) tests to explore the response of variations in compressive strength. The correlation of compressive strength with mesostructure of cemented samples was investigated using the X-ray computed tomography (XCT) method. Three main influential factors—the uniform spatial distribution, increasing contents, and increasing size of the crystals—were found to contribute positively to the strength behavior. Under relatively uniform spatial distribution, increasing the contents of crystals facilitated the initial construction of “spatial network” structure, and further stacks of calcium carbonate crystals promote the complete construction of the “spatial network” structure, and thus helped to increase compressive strength. The spatial distribution curves of crystals are in good agreement with the destructive characteristic curves of structures.


2018 ◽  
Vol 15 (1) ◽  
pp. 47-55
Author(s):  
Xuebing Li ◽  
Haifen Yang ◽  
Ning Wang ◽  
Tijian Sun ◽  
Wei Bian ◽  
...  

Background: Morin has many pharmacological functions including antioxidant, anticancer, anti-inflammatory, and antibacterial effects. It is commonly used in the treatment of antiviral infection, gastropathy, coronary heart disease and hepatitis B in clinic. However, researches have shown that morin is likely to show prooxidative effects on the cells when the amount of treatment is at high dose, leading to the decrease of intracellular ATP levels and the increase of necrosis process. Therefore, it is necessary to determine the concentration of morin in biologic samples. Method: Novel water-soluble and green nitrogen and sulfur co-doped carbon dots (NSCDs) were prepared by a microwave heating process with citric acid and L-cysteine. The fluorescence spectra were collected at an excitation wavelength of 350 nm when solutions of NSCDs were mixed with various concentrations of morin. Results: The as-prepared NSCDs were characterized by transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The fluorescence intensity of NSCDs decreased significantly with the increase of morin concentration. The fluorescence intensity of NSCDs displayed a linear response to morin in the concentration 0.10-30 μM with a low detection limit of 56 nM. The proposed fluorescent probe was applied to analysis of morin in human body fluids with recoveries of 98.0-102%. Conclusion: NSCDs were prepared by a microwave heating process. The present analytical method is sensitive to morin. The quenching process between NSCDs and morin is attributed to the static quenching. In addition, the cellular toxicity on HeLa cells indicated that the as-prepared NSCDs fluorescent probe does not show obvious cytotoxicity in cell imaging. Our proposed method possibly opens up a rapid and nontoxic way for preparing heteroatom doped carbon dots with a broad application prospect.


2021 ◽  
pp. 100233
Author(s):  
Koki Nakao ◽  
Shinya Inazumi ◽  
Toshiaki Takaue ◽  
Shigeaki Tanaka ◽  
Takayuki Shinoi

Geosciences ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 313
Author(s):  
Shinya Inazumi ◽  
Sudip Shakya ◽  
Takahiro Komaki ◽  
Yasuharu Nakanishi

This study focused on the middle-pressure jet grouting method, which has a complicated development mechanism for the columnar soil-improved body, with the aim of establishing a computer-aided engineering (CAE) system that can simulate the performance on a computer. Furthermore, in order to confirm the effect of middle-pressure jet grouting with mechanical agitation and mixing, a comparative analysis was performed with different jet pressures, the development situation was visualized, and the performance of this method was evaluated. The results of MPS-CAE as one of the CAE systems showed that the cement slurry jet ratio in the planned improvement range, including the periphery of the mixing blade, by the middle-pressure jet grouting together with the mechanical agitation and mixing was increased and a high quality columnar soil-improved body was obtained. It is expected that the introduction of CAE will contribute to the visualization of the ground, and that CAE will be an effective tool for the visual management of construction for ground improvement and the maintenance of improved grounds during the life cycle of the ground-improvement method.


2019 ◽  
Vol 9 (1) ◽  
pp. 481-489
Author(s):  
D.C. Lat ◽  
I.B.M. Jais ◽  
N. Ali ◽  
B. Baharom ◽  
N.Z. Mohd Yunus ◽  
...  

AbstractPolyurethane (PU) foam is a lightweight material that can be used efficiently as a ground improvement method in solving excessive and differential settlement of soil foundation mainly for infrastructures such as road, highway and parking spaces. The ground improvement method is done by excavation and removal of soft soil at shallow depth and replacement with lightweight PU foam slab. This study is done to simulate the model of marine clay soil integrated with polyurethane foam using finite element method (FEM) PLAXIS 2D for prediction of settlement behavior and uplift effect due to polyurethane foam mitigation method. Model of soft clay foundation stabilized with PU foam slab with variation in thickness and overburden loads were analyzed. Results from FEM exhibited the same trend as the results of the analytical method whereby PU foam has successfully reduced the amount of settlement significantly. With the increase in PU foam thickness, the settlement is reduced, nonetheless the uplift pressure starts to increase beyond the line of effective thickness. PU foam design chart has been produced for practical application in order to adopt the effective thickness of PU foam within tolerable settlement value and uplift pressure with respect to different overburden loads for ground improvement works.


2020 ◽  
Vol 10 (11) ◽  
pp. 4032
Author(s):  
Anna-Marie Lauermannová ◽  
Michal Lojka ◽  
Filip Antončík ◽  
David Sedmidubský ◽  
Milena Pavlíková ◽  
...  

The search for environmentally sustainable building materials is currently experiencing significant expansion. It is increasingly important to find new materials or reintroduce those that have been set aside to find a good replacement for Portland cement, which is widely used despite being environmentally insufficient and energy-intensive. Magnesium oxybromides, analogues to well-known magnesium oxychloride cements, fit both categories of new and reintroduced materials. In this contribution, two magnesium oxybromide phases were prepared and thoroughly analyzed. The stoichiometries of the prepared phases were 5Mg(OH)2∙MgBr2∙8H2O and 3Mg(OH)2∙MgBr2∙8H2O. The phase analysis was determined using X-ray diffraction. The morphology was analyzed with scanning and transmission electron microscopy. The chemical composition was studied using X-ray fluorescence and energy dispersive spectroscopy. Fourier transform infrared spectroscopy was also used. The thermal stability and the mechanism of the release of gasses linked to the heating process, such as water and hydrobromic acid evaporation, were analyzed using simultaneous thermal analysis combined with mass spectroscopy. The obtained results were compared with the data available for magnesium oxychlorides.


2016 ◽  
Vol 850 ◽  
pp. 191-196 ◽  
Author(s):  
Wei Wang ◽  
Cun Lei Zou ◽  
Ren Geng Li ◽  
Wen Wen ◽  
Hui Jun Kang ◽  
...  

In situ synchrotron X-ray diffraction was used to study a deformed Cu-0.88 Fe-0.24 P alloy during heating process. The measurements were performed at room temperature and also at high temperatures up to 893 K in order to determine the recovery, ageing and recrystallization process. With the increase of temperature, the angles of copper matrix peaks moved left and the FWHM (full width at half maximum) decreased slightly. Fe3P precipitates were first detected at 533 K, reached the maximum at 673 K, and re-dissolved into matrix at 853 K. A dramatic decrease in FWHM was observed accompanied by the precipitation of Fe3P phases, indicating the reduction of lattice distortion of copper matrix.


1995 ◽  
Vol 10 (3) ◽  
pp. 173-177 ◽  
Author(s):  
P. Ballirano ◽  
A. Maras ◽  
R. Caminiti ◽  
C. Sadun

New powder X-ray data for cancrinite [ideally Na8Si6Al6O24 (CO3)2·2 H2O] are reported along with in-situ real-time thermal processes recorded using energy dispersive X-ray diffractometry (EDXD). A completely anhydrous phase is obtained after heating the sample up to 600 °C and quickly cooling it to room temperature, as shown by means of both Rietveld analysis and IR spectroscopy. The anhydrous phase does not show any tendency to re-acquire molecular water. During the heating process, at around 450 °C, a peak splitting is observed, possibly due to a reversible phase transition.


2014 ◽  
Vol 1030-1032 ◽  
pp. 1037-1040
Author(s):  
Jin Fang Hou ◽  
Ju Chen ◽  
Jian Yu

The artificial island ground on an open sea is covered by thick soft soil. It must be improved before using. In accordance with a designing scheme, the ground treatment method is inserting drain boards on land and jointed dewatering surcharge preloading, the residual settlement is not more than 30cm after improvement and the average consolidation degree is more than 85%. In order to estimate ground improvement effect and construction safety, instruments are buried to monitor the whole ground improving processes. By monitoring settlement and pore water pressure, it is shown that the total ground settlement in construction is 2234mm, its final settlement is 2464mm, and consolidation degree and residual settlement respectively satisfy requirements. In ground improvement, horizontal displacement is small and construction is safe. Meanwhile, the results of soil properties and vane shear strength detection tests show the soft soil ground is greatly reduced in water content and porosity ratio, and improved in strength. It is named that the ground improvement method is reasonable and reaches expected effect.


2021 ◽  
Vol 1020 ◽  
pp. 8-12
Author(s):  
Wu Hu ◽  
Ke Zhu ◽  
Meng Wang ◽  
Wei Dong Huang ◽  
Jian Min Zeng

Linear segregation of high strength aluminum alloy ZL205A castings were studied by X-ray Nondestructive testing, scanning electron microscope and energy dispersive spectrometer. It is found that the linear segregation occurs at the large wall thickness of the casting and/or at the place where the wall thickness is in transition. Segregation element is mainly Cu, which exists as compound θ (Al2Cu) phase. The formation of linear segregation is related to the flow of Cu-rich melt in the late solidification period, while the occurrence of thermal cracks promotes the formation of linear segregation. The formation of linear segregation of the casting can be effectively prevented by eliminating hot spots of the casting, refining crystal grains and increasing solidification speed of the casting.


Sign in / Sign up

Export Citation Format

Share Document