scholarly journals miR-30 Family: A Promising Regulator in Development and Disease

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Ling Mao ◽  
Shiming Liu ◽  
Lin Hu ◽  
Li Jia ◽  
Hairong Wang ◽  
...  

MicroRNAs (miRNAs) are small noncoding RNAs that negatively regulate posttranscriptional expression of target genes. Accumulating evidences have demonstrated that the miR-30 family, as a member of microRNAs, played a crucial regulating role in the development of tissues and organs and the pathogenesis of clinical diseases, which indicated that it may be a promising regulator in development and disease. This review aims to clarify the current progress on the regulating role of miR-30 family in tissues and organs development and related disease and highlight their research prospective in the future.

2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Xiao-Ming Yu ◽  
Hao-Ye Meng ◽  
Xue-Ling Yuan ◽  
Yu Wang ◽  
Quan-Yi Guo ◽  
...  

Osteoarthritis (OA) is a chronic disease and its etiology is complex. With increasing OA incidence, more and more people are facing heavy financial and social burdens from the disease. Genetics-related aspects of OA pathogenesis are not well understood. Recent reports have examined the molecular mechanisms and genes related to OA. It has been realized that genetic changes in articular cartilage and bone may contribute to OA’s development. Osteoclasts, osteoblasts, osteocytes, and chondrocytes in joints must express appropriate genes to achieve tissue homeostasis, and errors in this can cause OA. MicroRNAs (miRNAs) are small noncoding RNAs that have been discovered to be overarching regulators of gene expression. Their ability to repress many target genes and their target-binding specificity indicate a complex network of interactions, which is still being defined. Many studies have focused on the role of miRNAs in bone and cartilage and have identified numbers of miRNAs that play important roles in regulating bone and cartilage homeostasis. Those miRNAs may also be involved in the pathology of OA, which is the focus of this review. Future studies on the role of miRNAs in OA will provide important clues leading to a better understanding of the mechanism(s) of OA and, more particularly, to the development of therapeutic targets for OA.


2022 ◽  
Vol 2022 ◽  
pp. 1-22
Author(s):  
Deniz Mortazavi ◽  
Behnoush Sohrabi ◽  
Meysam Mosallaei ◽  
Ziba Nariman-Saleh-Fam ◽  
Milad Bastami ◽  
...  

Cancer is a leading cause of death and disability worldwide. Epigenetic deregulation is one of the most critical mechanisms in carcinogenesis and can be classified into effects on DNA methylation and histone modification. MicroRNAs are small noncoding RNAs involved in fine-tuning their target genes after transcription. Various microRNAs control the expression of histone modifiers and are involved in a variety of cancers. Therefore, overexpression or downregulation of microRNAs can alter cell fate and cause malignancies. In this review, we discuss the role of microRNAs in regulating the histone modification machinery in various cancers, with a focus on the histone-modifying enzymes such as acetylases, deacetylases, methyltransferases, demethylases, kinases, phosphatases, desumoylases, ubiquitinases, and deubiquitinases. Understanding of microRNA-related aberrations underlying histone modifiers in pathogenesis of different cancers can help identify novel therapeutic targets or early detection approaches that allow better management of patients or monitoring of treatment response.


2021 ◽  
Vol 22 (11) ◽  
pp. 5711
Author(s):  
Julian Zacharjasz ◽  
Anna M. Mleczko ◽  
Paweł Bąkowski ◽  
Tomasz Piontek ◽  
Kamilla Bąkowska-Żywicka

Knee osteoarthritis (OA) is a degenerative knee joint disease that results from the breakdown of joint cartilage and underlying bone, affecting about 3.3% of the world's population. As OA is a multifactorial disease, the underlying pathological process is closely associated with genetic changes in articular cartilage and bone. Many studies have focused on the role of small noncoding RNAs in OA and identified numbers of microRNAs that play important roles in regulating bone and cartilage homeostasis. The connection between other types of small noncoding RNAs, especially tRNA-derived fragments and knee osteoarthritis is still elusive. The observation that there is limited information about small RNAs different than miRNAs in knee OA was very surprising to us, especially given the fact that tRNA fragments are known to participate in a plethora of human diseases and a portion of them are even more abundant than miRNAs. Inspired by these findings, in this review we have summarized the possible involvement of microRNAs and tRNA-derived fragments in the pathology of knee osteoarthritis.


Biology ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 486
Author(s):  
Sílvia C. Rodrigues ◽  
Renato M. S. Cardoso ◽  
Filipe V. Duarte

The most famous role of mitochondria is to generate ATP through oxidative phosphorylation, a metabolic pathway that involves a chain of four protein complexes (the electron transport chain, ETC) that generates a proton-motive force that in turn drives the ATP synthesis by the Complex V (ATP synthase). An impressive number of more than 1000 mitochondrial proteins have been discovered. Since mitochondrial proteins have a dual genetic origin, it is predicted that ~99% of these proteins are nuclear-encoded and are synthesized in the cytoplasmatic compartment, being further imported through mitochondrial membrane transporters. The lasting 1% of mitochondrial proteins are encoded by the mitochondrial genome and synthesized by the mitochondrial ribosome (mitoribosome). As a result, an appropriate regulation of mitochondrial protein synthesis is absolutely required to achieve and maintain normal mitochondrial function. Regarding miRNAs in mitochondria, it is well-recognized nowadays that several cellular mechanisms involving mitochondria are regulated by many genetic players that originate from either nuclear- or mitochondrial-encoded small noncoding RNAs (sncRNAs). Growing evidence collected from whole genome and transcriptome sequencing highlight the role of distinct members of this class, from short interfering RNAs (siRNAs) to miRNAs and long noncoding RNAs (lncRNAs). Some of the mechanisms that have been shown to be modulated are the expression of mitochondrial proteins itself, as well as the more complex coordination of mitochondrial structure and dynamics with its function. We devote particular attention to the role of mitochondrial miRNAs and to their role in the modulation of several molecular processes that could ultimately contribute to tissue regeneration accomplishment.


2021 ◽  
pp. mbc.E21-05-0225
Author(s):  
Katheryn E. Lett ◽  
Madelyn K. Logan ◽  
Douglas M. McLaurin ◽  
Michael D. Hebert

MicroRNAs (miRNAs) are ∼22 nt small noncoding RNAs that control gene expression at the posttranscriptional level through translational inhibition and destabilization of their target mRNAs. The biogenesis of miRNAs involves a series of processing steps beginning with cropping of the primary miRNA transcript by the Microprocessor complex, which is comprised of Drosha and DGCR8. Here we report a novel regulatory interaction between the Microprocessor components and coilin, the Cajal Body (CB) marker protein. Coilin knockdown causes alterations in the level of primary and mature miRNAs, let-7a and miR-34a, and their miRNA targets, HMGA2 and Notch1, respectively. We also found that coilin knockdown affects the levels of DGCR8 and Drosha in cells with (HeLa) and without (WI-38) CBs. To further explore the role of coilin in miRNA biogenesis, we conducted a series of co-immunoprecipitation experiments using coilin and DGCR8 constructs, which revealed that coilin and DGCR8 can form a complex. Additionally, our results indicate that phosphorylation of DGCR8, which has been shown to increase protein stability, is impacted by coilin knockdown. Collectively, our results implicate coilin as a member of the regulatory network governing miRNA biogenesis.


Cells ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1566 ◽  
Author(s):  
Marisol Godínez-Rubí ◽  
Daniel Ortuño-Sahagún

MicroRNAs (miRNAs) are small noncoding RNAs that function as epigenetic modulators regulating almost any gene expression. Similarly, other noncoding RNAs, as well as epigenetic modifications, can regulate miRNAs. This reciprocal interaction forms a miRNA-epigenetic feedback loop, the deregulation of which affects physiological processes and contributes to a great diversity of diseases. In the present review, we focus on miR-615, a miRNA highly conserved across eutherian mammals. It is involved not only during embryogenesis in the regulation of growth and development, for instance during osteogenesis and angiogenesis, but also in the regulation of cell growth and the proliferation and migration of cells, acting as a tumor suppressor or tumor promoter. It therefore serves as a biomarker for several types of cancer, and recently has also been found to be involved in reparative processes and neural repair. In addition, we present the pleiad of functions in which miR-615 is involved, as well as their multiple target genes and the multiple regulatory molecules involved in its own expression. We do this by introducing in a comprehensible way the reported knowledge of their actions and interactions and proposing an integral view of its regulatory mechanisms.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Noraini Abd-Aziz ◽  
Nur Izyani Kamaruzman ◽  
Chit Laa Poh

MicroRNAs (miRNAs) are small noncoding RNAs that function at the posttranscriptional level in the cellular regulation process. miRNA expression exerts vital effects on cell growth such as cell proliferation and survival. In cancers, miRNAs have been shown to initiate carcinogenesis, where overexpression of oncogenic miRNAs (oncomiRs) or reduced expression of tumor suppressor miRNAs has been reported. In this review, we discuss the involvement of miRNAs in tumorigenesis, the role of synthetic miRNAs as either mimics or antagomirs to overcome cancer growth, miRNA delivery, and approaches to enhance their therapeutic potentials.


2019 ◽  
Vol 39 (04) ◽  
pp. 463-475 ◽  
Author(s):  
Abdelrahman Yousry Afify ◽  
Salma Abdulmaqsoud Ibrahim ◽  
Mennah Hisham Aldamsisi ◽  
Mai Saad Zaghloul ◽  
Nada El-Ekiaby ◽  
...  

AbstractThe role of noncoding transcripts in gene expression is nowadays acknowledged to keep various diseases at bay—despite being referred to as “junk” DNA several years ago. Believed to be at the heart of multiple regulatory pathways, microRNAs (miRNAs) are small noncoding RNAs (ncRNAs) involved in posttranscriptional gene regulation. Recently, the discovery of ncRNAs that compete for shared miRNA pools has dimmed the light on the solo performance of miRNAs in genomic regulation. Indeed, several studies describe RNAs such as long noncoding RNAs, mRNAs, circular RNAs, pseudogenes, and viral RNAs as competing endogenous RNAs (ceRNAs) that sequester miRNAs, allowing for de-repression of downstream miRNA targets. Such integration between coding and noncoding transcripts forms complex ceRNA networks that when dysregulated lead to several diseases such as hepatocellular carcinoma. Here, the authors review perturbed ceRNA networks in hepatocellular carcinoma, describe the role of each in tumorigenesis, and discuss their various clinical implications.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Yasuto Kinose ◽  
Kenjiro Sawada ◽  
Koji Nakamura ◽  
Tadashi Kimura

Ovarian cancer is the most lethal of malignant gynecological tumors. Its lethality may be due to difficulties in detecting it at an early stage and lack of effective treatments for patients with an advanced or recurrent status. Therefore, there is a strong need for prognostic and predictive markers to diagnose it early and to help optimize and personalize treatment. MicroRNAs are noncoding RNAs that regulate target genes posttranscriptionally. They are involved in carcinogenesis, cell cycle, apoptosis, proliferation, invasion, metastasis, and chemoresistance. The dysregulation of microRNAs is involved in the initiation and progression of human cancers including ovarian cancer, and strong evidence that microRNAs can act as oncogenes or tumor suppressor genes has emerged. Several microRNA signatures that are unique to ovarian cancer have been proposed, and serum-circulating microRNAs have the potential to be useful diagnostic and prognostic biomarkers. Various microRNAs such as those in the miR-200 family, the miR-199/214 cluster, or the let-7 paralogs have potential as therapeutic targets for disseminated or chemoresistant ovarian tumors. Although many obstacles need to be overcome, microRNA therapy could be a powerful tool for ovarian cancer prevention and treatment. In this review, we discuss the emerging roles of microRNAs in various aspects of ovarian cancer.


2015 ◽  
Vol 308 (7) ◽  
pp. C521-C527 ◽  
Author(s):  
Michael B. Butterworth

The role of small noncoding RNAs, termed microRNAs (miRs), in development and disease has been recognized for many years. The number of miRs and regulated targets that reinforce a role for miRs in human disease and disease progression is ever-increasing. However, less is known about the involvement of miRs in steady-state, nondisease homeostatic pathways. In the kidney, much of the regulated ion transport is under the control of hormonal signaling. Evidence is emerging that miRs are involved in the hormonal regulation of kidney function and, particularly, in ion transport. In this short review, the production and intra- and extracellular signaling of miRs and the involvement of miRs in kidney disease are discussed. The discussion also focuses on the role of these small biological molecules in the homeostatic control of ion transport in the kidney. MiR regulation of and by corticosteroid hormones, in particular the mineralocorticoid hormone aldosterone, is considered. While information about the role of aldosterone-regulated miRs in the kidney is limited, an increase in the research in this area will undoubtedly highlight the involvement of miRs as central mediators of hormonal signaling in normal physiology.


Sign in / Sign up

Export Citation Format

Share Document