scholarly journals Evaluation of Some Mechanical Properties of a Maxillofacial Silicon Elastomer Reinforced with Polyester Powder

2019 ◽  
Vol 2019 ◽  
pp. 1-6 ◽  
Author(s):  
Yagthan Mohammed Haider ◽  
Zainab Salih Abdullah ◽  
Ghasak H. Jani ◽  
Norehan Mokhtar

Maxillofacial silicone elastomers are used to replace and reconstruct missing facial parts for patients with trauma or a certain disease. Although commonly favorable silicone elastomers are not ideal in properties, many studies have been carried out to improve their mechanical properties and to come out with ideal maxillofacial prosthetic materials, so as to render patients with the best maxillofacial prostheses. The aim of the current study is to evaluate the effect of addition of different concentrations of polyester powder on hardness, tear strength, surface roughness, and tensile strength of maxillofacial A-2186 RTV silicone elastomers. Polyester powder was added to the silicone elastomer in the concentrations of 1%, 3% and 5% by using an electronic digital balance, compared with the control group of 0% polyester filler. The shore A hardness test was done according to ASTM D 2240 standards. The tear test was done according to ASTM D624 type C standards. The tensile test was done according to ISO specification number 37:2011. The surface roughness test was performed according to ISO 7619-1 2010 specifications. The data collected were then analyzed using one-way analysis of variance (ANOVA) and post hoc and Fisher’s LSD tests. All three groups showed a highly significant increase in tear strength, tensile strength, hardness, and roughness, compared to the control group. Reinforcement of A-2186 Platinum RTV Silicone Elastomer with 5% polyester significantly improved the mechanical properties tested in this study.

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3603
Author(s):  
Tim Pasang ◽  
Benny Tavlovich ◽  
Omry Yannay ◽  
Ben Jakson ◽  
Mike Fry ◽  
...  

An investigation of mechanical properties of Ti6Al4V produced by additive manufacturing (AM) in the as-printed condition have been conducted and compared with wrought alloys. The AM samples were built by Selective Laser Melting (SLM) and Electron Beam Melting (EBM) in 0°, 45° and 90°—relative to horizontal direction. Similarly, the wrought samples were also cut and tested in the same directions relative to the plate rolling direction. The microstructures of the samples were significantly different on all samples. α′ martensite was observed on the SLM, acicular α on EBM and combination of both on the wrought alloy. EBM samples had higher surface roughness (Ra) compared with both SLM and wrought alloy. SLM samples were comparatively harder than wrought alloy and EBM. Tensile strength of the wrought alloy was higher in all directions except for 45°, where SLM samples showed higher strength than both EBM and wrought alloy on that direction. The ductility of the wrought alloy was consistently higher than both SLM and EBM indicated by clear necking feature on the wrought alloy samples. Dimples were observed on all fracture surfaces.


Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 117
Author(s):  
Le Thuy Hang ◽  
Do Quoc Viet ◽  
Nguyen Pham Duy Linh ◽  
Vu Anh Doan ◽  
Hai-Linh Thi Dang ◽  
...  

In this study, we present the fabrication of nitrile butadiene rubber/waste leather fiber (NBR/WLF) composites with different weight percentages of WLF and NBR (0/100, 20/80, 30/70, 40/60, 50/50, 60/40 wt/wt). WLF was prepared by cutting the scrap leathers from the waste product of the Vietnamese leather industry. Subsequently, in order to make the short fibers, it was mixed by a hammer mill. The characteristics of WLF/NBR composites such as mechanical properties (tensile strength, tear strength, hardness), dynamic mechanical properties, toluene absorption, and morphology were carefully evaluated. As a result, the tensile strength and tear strength become larger with increasing WLF content from 0 to 50 wt% and they decrease when further increasing WLF content. The highest tensile strength of 12.5 MPa and tear strength of 72.47 N/mm were achieved with the WLF/NBR ratio of 50/50 wt%. Both hardness and resistance of the developed materials with toluene increased with increasing WLF content. The SEM results showed a good adhesion of NBR matrix and the WLF. The increasing of storage modulus (E’) in comparison with raw NBR showed good compatibility between WLF and NBR matrix. This research showed that the recycled material from waste leather and NBR was successfully prepared and has great potential for manufacturing products such as floor covering courts and playgrounds, etc.


2017 ◽  
Vol 6 (3) ◽  
pp. 27
Author(s):  
Awham M. Hameed

In this work, two ternary polymer blends were prepared by mixing EP with (UP/PSR) and (PVC/PSR) respectively. Different mixing ratios were used (5, 10, 15 and 20) wt.% of the added polymers. Impact, tensile, compression, flexural and hardness tests were performed on the prepared blends. The results of testing showed that the first ternary blend A (EP/UP/PSR) records tensile strength values higher than that of the second ternary blend B (EP/ PVC/PSR). At 20wt.% of mixing, the blend B records higher impact strength than that of the blend A. There is large difference in the flexural behavior between A and B blends where the blend A records the highest value of flexural strength (F.S) at (5wt.%) while the blend B records the highest value of (F.S) at (20wt.%). From compression test, it is obvious that the values of compressive strength decrease of blend B more than that of the blend A as well as the same behavior can be obtained through the hardness test.


“Slicing tool” or “Slicing Software” computes the intersection curves of models and slicing planes. They improve the quality of the model being printed when given in the form of STL file. Upon analyzing a specimen that has been printed using two different slicing tools, there was a drastic variation on account of the mechanical properties of the specimen. The ultimate tensile strength and the surface roughness of the material vary from one tool to another. This paper reports an investigation and analysis of the variation in the ultimate tensile strength and the surface roughness of the specimen, given that the 3D printer and the model being printed is the same, with a variation of usage of slicing software. This analysis includes ReplicatorG, Flashprint as the two different slicing tools that are used for slicing of the model. The variation in the ultimate tensile strength and the surface roughness are measured and represented statistically through graphs. An appropriate decisive conclusion was drawn on the basis of the observations and analysis of the experiment on relevance to the behavior and mechanical properties of the specimen.


2021 ◽  
Vol 16 (3) ◽  
pp. 124-135
Author(s):  
Nilüfer Yıldız Varan

Antimicrobials are substances or mixtures of substances used to destroy or suppress the growth of harmful microorganisms such as bacteria, viruses, or fungi on inanimate objects and surfaces. In this study, an alternative method is presented using triclosan agents that can kill bacteria and viruses to help keep patient, operating, and emergency rooms free of germs. Samples were treated with triclosan to achieve antimicrobial/antiviral/antifungal properties for further designs to help comfort and bacteria, virus, fungi (BVF) resistantance during use. The physical, and mechanical properties of triclosan treated cotton and cotton/elastane fabrics in comparison with untreated control samples was investigated. The results showed that a small significant decrease was observed for tensile strength (strip and grab methods), tear strength and seam strength. Besides, statistically a small significant decrease was observed with the increase in triclosan concentration for all samples. The panama weaves showed the lowest tensile strength and the highest tear strength and statistically small significant decrease was observed for all treated samples. The antimicrobial tests showed that all treated samples have a very good antimicrobial activity which can also lead to antivirus protection by providing hygienic environment for the users during future designs.


2022 ◽  
Author(s):  
CY Zhang ◽  
C Agingu ◽  
H Yang ◽  
H Cheng ◽  
H Yu

SUMMARY Objectives: This study aimed to investigate the effects of hydrothermal treatment on four types of monolithic, translucent, yttria-stabilized, tetragonal zirconia polycrystals (Y-TZPs). Methods and Materials: Two commercially available Y-TZP brands—SuperfectZir High Translucency (Aidite Technology Co, China) and Katana HT (Kuraray Noritake Dental, Japan) were assessed. For each brand of Y-TZP, materials of four coloring types, including noncolored (NC), colored by staining (CS), precolored (PC), and multilayered (ML) specimens were investigated after hydrothermal aging in an autoclave at 134°C/0.2 MPa for 0 (control group), 5, 10, and 20 hours. The tetragonal-to-monoclinic phase transformation, surface roughness, flexural strength, and structural reliability (Weibull analysis) were measured and statistically analyzed (α=0.05). The subsurface microstructure was analyzed with scanning electron microscopy. Results: The group ML exhibited the lowest flexural strength and Weibull characteristic strength among the four coloring types (p<0.05). Slight increases in the monoclinic phase volume, flexural strength, and Weibull characteristic strength were observed after hydrothermal aging (pall<0.05). Regardless of coloring type, no significant effects of aging on the Weibull modulus or surface roughness were found for the tested materials. Compared with the Katana HT cross-sections, the SuperfectZir High Translucency cross-sections exhibited a similar but thicker transformation zone. Conclusions: The coloring procedure and material type were found to affect the mechanical properties and aging resistance of translucent monolithic Y-TZP ceramics. Regardless of the aging time, the surface roughness of the tested Y-TZP ceramics remained unchanged.


2005 ◽  
Vol 21 (3) ◽  
pp. 183-199
Author(s):  
G.K. Jana ◽  
C.K. Das

De-vulcanization of vulcanized elastomers represents a great challenge because of their three-dimensional network structure. Sulfur-cured gum natural rubbers containing three different sulfur/accelerator ratios were de-vulcanized by thio-acids. The process was carried out at 90 °C for 10 minutes in an open two-roll cracker-cum-mixing mill. Two concentrations of de-vulcanizing agent were tried in order to study the cleavage of the sulfidic bonds. The mechanical properties of the re-vulcanized rubber (like tensile strength, modulus, tear strength and elongation at break) were improved with increasing concentrations of de-vulcanizing agent, because the crosslink density increased. A decrease in scorch time and in optimum cure time and an increase in the state of cure were observed when vulcanized rubber was treated with high amounts of de-vulcanizing agent. The temperature of onset of degradation was also increased with increasing concentration of thio-acid. DMA analysis revealed that the storage modulus increased on re-vulcanization. From IR spectroscopy it was observed that oxidation of the main polymeric chains did not occur at the time of high temperature milling. Over 80% retention of the original mechanical properties (like tensile strength, modulus, tear strength and elongation at break) of the vulcanized natural rubber was achieved by this mechanochemical process.


2020 ◽  
Vol 10 (3) ◽  
pp. 281-292 ◽  
Author(s):  
Saurabh Dewangan ◽  
Suraj Kumar Mohapatra ◽  
Abhishek Sharma

PurposeTitanium (Ti) alloys are in high demand in manufacturing industries all over the world. The property like high strength to weight ratio makes Ti alloys highly recommended for aerospace industries. Ti alloys possess good weldability, and therefore, they were extensively investigated with regard to strength and metallurgical properties of welded joint. This study aims to deal with the analysis of strength and microstructural changes in Ti-6Al-4V (Grade 5) alloy after tungsten inert gas (TIG) welding.Design/methodology/approachTwo pair of Ti alloy plates were welded in two different voltages, i.e. 24 and 28 V, with keeping the current constant, i.e. 80 A It was a random selection of current and voltage values to check the performance of welded material. Both the welded plates were undergone through some mechanical property analysis like impact test, tensile test and hardness test. In addition, the microstructure of the welded joints was also analyzed.FindingsIt was found that hardness and tensile properties gets improved with an increment in voltage, but this effect was reverse for impact toughness. A good corroboration between microstructure and mechanical properties, such as tensile strength, hardness and toughness, was reported in this work. Heat distribution in both the welded plates was simulated through ANSYS software to check the temperature contour in the plates.Originality/valueA good corroboration between microstructure and mechanical properties, such as tensile strength, hardness and toughness, was reported in this study.


2016 ◽  
Vol 842 ◽  
pp. 43-52 ◽  
Author(s):  
Viktor Malau ◽  
Latif Arifudin

Vickers microindentation hardness test has been applied for a long time to determine the mechanical properties of a small volume of samples. The procedure of this hardness test consists of using a constant load on a rigid indenter and measuring the dimensions of the indenter residual impression (indentation imprint) on the surface of the sample tested after loading and unloading. The objective of this research is to characterize the mechanical properties and material constants of HQ (High Quality) 705 alloy steel mainly its VHN (Vickers Hardness Number) and tensile strength before and after quenching and tempering heat treatments. The characterization is based on Vickers microhardness dependence load curves.Quenching treatment was performed in a furnace by heating the samples at austenite temperature of 850 o C with holding time of two hours and then the samples were rapidly cooled in oil bath. Tempering processes were conducted by heating again the quenching samples to temperatures of 150, 200, 250, 300, 350, 400, 450, 500, 550 and 600 o C with holding time of two hours for each sample. Finally, all samples were slowly cooled in atmospheric temperature. The mechanical properties of samples were characterized by using Vickers microhardness dependence load curves.The results show that VHN (Vickers Hardness Number) depends on indentation load and VHN increases with increment of load for indentation load lower than 5 N. VHN is almost constant for indentation load greater than 5 N. The raw material (without heat treatment) has the VHN and tensile strength of 3413 MPa and 1050.61 MPa respectively and the quenched samples have the VHN and tensile strength of 5407 and 1861 MPa respectively. The Vickers hardness and tensile strength decrease with the increment of tempering temperatures. The higher tempering temperature produces lower hardness and tensile strength. The raw material tensile strength of 1058.8 MPa obtained by tensile test is comparable to its tensile strength of 1050.61 MPa obtained by Vickers indentation. This result indicates that Vickers microindentation is valid to use for evaluating the tensile strength of HQ 705 alloy steel.


2016 ◽  
Vol 41 (3) ◽  
pp. 318-326 ◽  
Author(s):  
Y Kim ◽  
HH Son ◽  
K Yi ◽  
JS Ahn ◽  
J Chang

SUMMARY Objective: The purpose of the study was to evaluate the effect of bleaching on teeth with white spot lesions. Methods and Materials: Carious lesions with standardized whiteness were produced on the buccal and lingual surfaces of human premolars by pH cycling. Specimens were subjected to four experimental conditions (n=20/group) as follows: group 1, control; group 2, caries formation followed by remineralization using fluoride-containing casein phosphopeptide–amorphous calcium phosphate (CPP-ACP; Tooth Mousse Plus, GC, Tokyo, Japan); group 3, caries formation followed by bleaching using 10% carbamide peroxide; and group 4, caries formation followed by both bleaching and remineralization. The CIE L*a*b* color values were measured with a spectroradiometer, the mineral content was measured with electron probe microanalysis (EPMA) on the cross-sectional surface of each specimen, and the Knoop hardness test was carried out along the EPMA scan line. Two-way analysis of variance was performed with Tukey post hoc comparison. Results: The change in the CIE color values was not significantly different between the caries-formed (ΔE*=7.03) and the bleached enamel (ΔE*=7.60). Bleaching of the carious enamel extended the whiteness (ΔE*=3.38) without additional mineral loss (p<0.05). The remineralization treatment significantly increased the calcium (Ca), phosphate (P), and fluoride content of the subsurface lesion area (p<0.05). The cross-sectional microhardness values correlated well with the Ca and P content (R>0.80). Conclusions: Bleaching reduced the color disparities between sound and carious enamel without deteriorating the chemical and mechanical properties. The application of CPP-ACP paste enhanced mineral deposition in the subsurface lesion area of carious enamel.


Sign in / Sign up

Export Citation Format

Share Document