scholarly journals Beneficial Effects of Citrus Flavonoids on Cardiovascular and Metabolic Health

2019 ◽  
Vol 2019 ◽  
pp. 1-19 ◽  
Author(s):  
Ayman M. Mahmoud ◽  
Rene J. Hernández Bautista ◽  
Mansur A. Sandhu ◽  
Omnia E. Hussein

The prevalence of cardiovascular disease (CVD) is increasing over time. CVD is a comorbidity in diabetes and contributes to premature death. Citrus flavonoids possess several biological activities and have emerged as efficient therapeutics for the treatment of CVD. Citrus flavonoids scavenge free radicals, improve glucose tolerance and insulin sensitivity, modulate lipid metabolism and adipocyte differentiation, suppress inflammation and apoptosis, and improve endothelial dysfunction. The intake of citrus flavonoids has been associated with improved cardiovascular outcomes. Although citrus flavonoids exerted multiple beneficial effects, their mechanisms of action are not completely established. In this review, we summarized recent findings and advances in understanding the mechanisms underlying the protective effects of citrus flavonoids against oxidative stress, inflammation, diabetes, dyslipidemia, endothelial dysfunction, and atherosclerosis. Further studies and clinical trials to assess the efficacy and to explore the underlying mechanism(s) of action of citrus flavonoids are recommended.

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Kai Fang ◽  
Ming Gu

Crocin is a carotenoid compound which possesses multiple biological activities. Our and other laboratory’s previous findings show that crocin alleviates obesity and type 2 diabetes-related complications. We have found that crocin activates AMP-activated protein kinase (AMPK) signaling and inhibition of AMPK suppresses crocin-induced protective effects. However, the causal role of AMPK activation in the biological role of crocin is still not verified. In the present study, we showed that crocin markedly inhibits the changes of glucose metabolic parameters and serum lipid profiles in wild type diabetic mice. In AMPKα KO diabetic mice, those protective effects of crocin against glucose and lipid metabolic dysfunction were abolished. These results demonstrated AMPK activation was responsible for the beneficial effects of crocin on metabolic dysfunction. Moreover, we have shown that the antiobese effect of crocin has been abolished by the deficiency of AMPKα. We also showed that crocin induced a significant decrease of CDK5 protein level in wild type diabetic mice, while this effect was abolished in AMPKα KO diabetic mice. The regulation of downstream targets of CDK5/PPARγ by crocin was abolished by the deficiency of AMPK. In conclusion, our study verified that activation of AMPK is involved in crocin-induced protective effects against glucose and lipid metabolic dysfunction. Activation of AMPK downregulates the protein level of CDK5, followed by the decrease of PPARγ phosphorylation, leading to the inhibition of adipose formation and metabolic dysfunction. Our study provides new insights into the mechanism of protective effects of crocin and interaction of AMPK and CDK5/PPARγ signaling.


2018 ◽  
Vol 19 (10) ◽  
pp. 3270 ◽  
Author(s):  
Yasuyoshi Miyata ◽  
Hideki Sakai

Royal jelly (RJ) is a glandular secretion produced by worker honeybees and is a special food for the queen honeybee. It results in a significant prolongation of the lifespan of the queen honeybee compared with the worker honeybees through anti-inflammatory, anti-oxidant and anti-microbial activities. Consequently, RJ is used as cosmetic and dietary supplement throughout the world. In addition, in vitro studies and animal experiments have demonstrated that RJ inhibits cell proliferation and stimulates apoptosis in various types of malignant cells and affects the production of various chemokines, anti-oxidants and growth factors and the expression of cancer-related molecules in patients with malignancies, especially in patients treated with anti-cancer agents. Therefore, RJ is thought to exert anti-cancer effects on tumor growth and exhibit protective functions against drug-induced toxicities. RJ has also been demonstrated to be useful for suppression of adverse events, the maintenance of the quality of life during treatment and the improvement of prognosis in animal models and patients with malignancies. To understand the mechanisms of the beneficial effects of RJ, knowledge of the changes induced at the molecular level by RJ with respect to cell survival, inflammation, oxidative stress and other cancer-related factors is essential. In addition, the effects of combination therapies of RJ and other anti-cancer agents or natural compounds are important to determine the future direction of RJ-based treatment strategies. Therefore, in this review, we have covered the following five issues: (1) the anti-cancer effects of RJ and its main component, 10-hydroxy-2-decenoic acid; (2) the protective effects of RJ against anti-cancer agent-induced toxicities; (3) the molecular mechanisms of such beneficial effects of RJ; (4) the safety and toxicity of RJ; and (5) the future directions of RJ-based treatment strategies, with a discussion on the limitations of the study of the biological activities of RJ.


2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
K. Stromsnes ◽  
C. Mas-Bargues ◽  
J. Gambini ◽  
L. Gimeno-Mallench

Endothelial dysfunction tends to be the initial indicator in proinflammatory state and macro- and microvascular complications, such as atherosclerosis and cardiovascular diseases. It has been shown that certain compounds in diet can generate beneficial effects on cardiovascular disease due to its interactions with endothelial cells. Thus, this review is aimed at investigating whether certain polyphenols present in the Mediterranean diet, specifically catechin, quercetin, resveratrol, and urolithin, could exert positive effects on endothelial dysfunction. After analysis of numerous papers, we found that polyphenols aiding endothelial function is beneficial not only for patients with cardiovascular disease, diabetes, or endothelial dysfunction but for all people as it can improve the effects of aging on the endothelia. The additional benefit of these polyphenols on weight loss further improves health and lowers the risk of several diseases, including those caused by endothelial dysfunction. However, it is important to note that the dosages in the majorities of the studies mentioned in this review were of supplemental rather than nutritionally relevant quantities, and therefore, the recommended dosages are difficult to determine.


2016 ◽  
Vol 44 (04) ◽  
pp. 785-801 ◽  
Author(s):  
Jingyun Shao ◽  
Peng Wang ◽  
An Liu ◽  
Xusheng Du ◽  
Jie Bai ◽  
...  

Punicalagin (PG), a major bioactive ingredient in pomegranate juice, has been proven to have anti-oxidative stress properties and to exert protective effects on acute lung injuries induced by lipopolysaccharides. This study aimed to investigate the effects of PG treatment on hypoxic pulmonary hypertension (HPH) and the underlying mechanisms responsible for the effects. Rats were exposed to 10% oxygen for 2 wk (8 h/day) to induce the HPH model. PG (5, 15, 45[Formula: see text]mg/kg) was orally administered 10[Formula: see text]min before hypoxia each day. PG treatments at the doses of 15 and 45[Formula: see text]mg/kg/d decreased the mean pulmonary arterial pressure (mPAP) and alleviated right ventricular hypertrophy and vascular remodeling in HPH rats. Meanwhile, PG treatment attenuated the hypoxia-induced endothelial dysfunction of pulmonary artery rings. The beneficial effects of PG treatment were associated with improved nitric oxide (NO)-cGMP signaling and reduced oxidative stress, as evidenced by decreased superoxide generation, gp91[Formula: see text] expression and nitrotyrosine content in the pulmonary arteries. Furthermore, tempol’s scavenging of oxidative stress also increased NO production and attenuated endothelial dysfunction and pulmonary hypertension in HPH rats. Combining tempol and PG did not exert additional beneficial effects compared to tempol alone. Our study indicated for the first time that PG treatment can protect against hypoxia-induced endothelial dysfunction and pulmonary hypertension in rats, which may be induced via its anti-oxidant actions.


2014 ◽  
Vol 306 (8) ◽  
pp. E975-E988 ◽  
Author(s):  
Yan Liu ◽  
Dan Li ◽  
Yuhua Zhang ◽  
Ruifang Sun ◽  
Min Xia

Adiponectin is an adipose tissue-secreted adipokine with beneficial effects on the cardiovascular system. In this study, we evaluated a potential role for adiponectin in the protective effects of anthocyanin on diabetes-related endothelial dysfunction. We treated db/db mice on a normal diet with anthocyanin cyanidin-3- O-β-glucoside (C3G; 2 g/kg diet) for 8 wk. Endothelium-dependent and -independent relaxations of the aorta were then evaluated. Adiponectin expression and secretion were also measured. C3G treatment restores endothelium-dependent relaxation of the aorta in db/db mice, whereas diabetic mice treated with an anti-adiponectin antibody do not respond. C3G treatment induces adiponectin expression and secretion in cultured 3T3 adipocytes through transcription factor forkhead box O1 (Foxo1). Silencing Foxo1 expression prevented C3G-stimulated induction of adiponectin expression. In contrast, overexpression of Foxo1-ADA promoted adiponectin expression in adipocytes. C3G activates Foxo1 by increasing its deacetylation via silent mating type information regulation 2 homolog 1 (Sirt1). Furthermore, purified anthocyanin supplementation significantly improved flow-mediated dilation (FMD) and increased serum adiponectin concentrations in patients with type 2 diabetes. Changes in adiponectin concentrations positively correlated with FMD in the anthocyanin group. Mechanistically, adiponectin activates cAMP-PKA-eNOS signaling pathways in human aortic endothelial cells, increasing endothelial nitric oxide bioavailability. These results demonstrate that adipocyte-derived adiponectin is required for anthocyanin C3G-mediated improvement of endothelial function in diabetes.


2020 ◽  
Vol 26 (30) ◽  
pp. 3684-3699 ◽  
Author(s):  
Nathalie T.B. Delgado ◽  
Wender N. Rouver ◽  
Roger L. dos Santos

Background: Punica granatum L. is an infructescence native of occidental Asia and Mediterranean Europe, popularly referred to as pomegranate. It has been used in ethnomedicine for several applications, including the treatment of obesity, inflammation, diabetes, and the regulation of blood lipid parameters. Thus, pomegranate has been linked to the treatment of cardiovascular diseases that have endothelial dysfunction as a common factor acting mainly against oxidative stress due to its high polyphenol content. Its biocomponents have antihypertensive, antiatherogenic, antihyperglycemic, and anti-inflammatory properties, which promote cardiovascular protection through the improvement of endothelial function. Methods: Different electronic databases were searched in a non-systematic way to uncover the literature of interest. Conclusion: This review article presents updated information on the role of pomegranate in the context of endothelial dysfunction and cardiovascular diseases. We have shown that pomegranate, or rather its components (e.g., tannins, flavonoids, phytoestrogens, anthocyanins, alkaloids, etc.), have beneficial effects on the cardiovascular system, improving parameters such as oxidative stress and the enzymatic antioxidant system, reducing reactive oxygen species formation and acting in an anti-inflammatory way. Thus, this review may contribute to a better understanding of pomegranate's beneficial actions on endothelial function and possibly to the development of strategies associated with conventional treatments of cardiovascular diseases.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Kyung-Baeg Roh ◽  
Deokhoon Park ◽  
Eunsun Jung

Glucocorticoids are a risk factor for age-induced skin structure and function defects, and the glucocorticoid-activating enzyme, 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1), represents a promising therapeutic target. Prunella vulgaris L. (PV) is a perennial and an edible herbaceous plant normally cultivated in Asia and Europe. A recent study demonstrated a broad range of biological activities of PV including immune modulatory, antiviral, antiallergic, anti-inflammatory, antioxidant, and antidiabetic. However, little is known about the inhibitory effect of PV on 11β-HSD1. In this study, we investigated the inhibitory effect of Prunella vulgaris L. extract (PVE) and the underlying mechanism of 11β-HSD11 inhibition. Consistent with these results, cortisol levels were also reduced by PVE in vitro. The cortisone-induced translocation of glucocorticoids receptor (GR) was also attenuated. In addition, PVE inhibited a cortisone-mediated decrease in collagen content in skin. Collectively, these results suggest the beneficial effects of PVE in maintaining skin integrity.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Yi Zhang ◽  
Tiecheng Pan ◽  
Xiaoxuan Zhong ◽  
Cai Cheng

Aim. To explore whether Chinese traditional medicine, tongxinluo (TXL), exerts beneficial effects on endothelial dysfunction induced by homocysteine thiolactone (HTL) and to investigate the potential mechanisms.Methods and Results. Incubation of cultured human umbilical vein endothelial cells with HTL (1 mM) for 24 hours significantly reduced cell viabilities assayed by MTT, and enhanced productions of reactive oxygen species. Pretreatment of cells with TXL (100, 200, and 400 μg/mL) for 1 hour reversed these effects induced by HTL. Further, coincubation with GW9662 (0.01, 0.1 mM) abolished the protective effects of TXL on HTL-treated cells. Inex vivoexperiments, exposure of isolated aortic rings from rats to HTL (1 mM) for 1 hour dramatically impaired acetylcholine-induced endothelium-dependent relaxation, reduced SOD activity, and increased malondialdehyde content in aortic tissues. Preincubation of aortic rings with TXL (100, 200, and 400 μg/mL) normalized the disorders induced by HTL. Importantly, all effects induced by TXL were reversed by GW9662.In vivoanalysis indicated that the administration of TXL (1.0 g/kg/d) remarkably suppressed oxidative stress and prevented endothelial dysfunction in rats fed with HTL (50 mg/kg/d) for 8 weeks.Conclusions. TXL improves endothelial functions in rats fed with HTL, which is related to PPARγ-dependent suppression of oxidative stress.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Yawen Lu ◽  
Bo Ji ◽  
Guozhen Zhao ◽  
Jian Dai ◽  
Reiko Sakurai ◽  
...  

Background. Maternal smoking and/or exposure to environmental tobacco smoke continue to be significant factors in fetal and childhood morbidity and are a serious public health issue worldwide. Nicotine passes through the placenta easily with minimal biotransformation, entering fetal circulation, where it results in many harmful effects on the developing offspring, especially on the developing respiratory system. Objectives. Recently, in a rat model, electroacupuncture (EA) at maternal acupoints ST 36 has been shown to block perinatal nicotine-induced pulmonary damage; however, the underlying mechanism and the specificity of ST 36 acupoints for this effect are unknown. Here, we tested the hypothesis that compared with EA at ST 36, EA at LU 5 acupoints, which are on lung-specific meridian, will be equally or more effective in preventing perinatal nicotine-induced pulmonary changes. Methods. Twenty-four pregnant rat dams were randomly divided into 4 groups: saline (“S”), nicotine (“N”), nicotine + ST 36 (N + ST 36), and nicotine + LU 5 (N + LU 5) groups. Nicotine (1 mg/kg, subcutaneously) and EA (at ST 36 or LU 5 acupoints, bilaterally) were administered from embryonic day 6 to postnatal day 21 once daily. The “S” group was injected saline. As needed, using ELISA, western analysis, q-RT-PCR, lung histopathology, maternal and offspring hypothalamic pituitary adrenal axes, offspring key lung developmental markers, and lung morphometry were determined. Results. With nicotine exposure, alveolar count decreased, but mean linear intercept and septal thickness increased. It also led to a decrease in pulmonary function and PPARγ and an increase of β-catenin and glucocorticoid receptor expression in lung tissue and corticosterone in the serum of offspring rats. Electroacupuncture at ST 36 normalized all of these changes, whereas EA at LU 5 had no obvious effect. Conclusion. Electroacupuncture applied to ST 36 acupoints provided effective protection against perinatal nicotine-induced lung changes, whereas EA applied at LU 5 acupoints was ineffective, suggesting mechanistic specificity and HPA axis’ involvement in mediating EA at ST 36 acupoints’ effects in mitigating perinatal nicotine-induced pulmonary phenotype. This opens the possibility that other acupoints, besides ST 36, can have similar or even more robust beneficial effects on the developing lung against the harmful effect of perinatal nicotine exposure. The approach proposed by us is simple, cheap, quick, easy to administer, and is devoid of any significant side effects.


2001 ◽  
Vol 71 (1) ◽  
pp. 18-24 ◽  
Author(s):  
Denis Bron ◽  
Reto Asmis

Successful strategy for the prevention of coronary heart disease (CHD) in particular of atherosclerosis, require a detailed understanding of the underlying mechanism. It is now being recognised that dietary antioxidants, in particular vitamin E, will play an important role in designing future strategies. Although more and more beneficial effects of vitamin E on atherosclerosis are being described, the biochemical and cell biological mechanism underlying these benefits are not yet fully understood, preventing the use of vitamin E as therapeutic agent. Recent new findings have shed new light on the physiological role of vitamin E and suggest that it has a much broader array of biological activities than originally expected. In addition to its well described role as an antioxidant, it is becoming evident that vitamin E also can modulate the immune system, suppress local and chronic inflammation, reduce blood coagulation and thrombus formation, and enhance cell function and survival. This review summarises new findings from in vitro studies and discusses their potential relevance in human atherosclerosis.


Sign in / Sign up

Export Citation Format

Share Document