scholarly journals Mantle-Derived Helium Emission near the Pohang EGS Site, South Korea: Implications for Active Fault Distribution

Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Heejun Kim ◽  
Hyunwoo Lee ◽  
Jaemin Lee ◽  
Hyun A. Lee ◽  
Nam Chil Woo ◽  
...  

An Mw 5.5 earthquake occurred in Pohang, South Korea on November 15, 2017, resulting in a great impact on society. Despite a lot of controversy about the cause of the earthquake in relation to the enhanced geothermal system (EGS), the location of earthquake-related active faults is poorly known. Here, we first report the results of the geochemical and isotopic analyses of dissolved gases in groundwater in the Heunghae, Yeonil, and Sinkwang areas. According to the N2-Ar-He relationship, samples from the Heunghae and Yeonil areas are contributed to the mantle, except for the Sinkwang area, where all samples are atmospheric. The Pohang samples consist mainly of N2 and CO2, and some samples of the Heunghae and Yeonil areas contain substantial CH4. Stable isotope compositions of N2 (δ15N=0.2 to 3.6‰), CO2 (δ13C=−27.3 to−16.0‰), and CH4 (δ13C=−76.1 to−70.0‰) indicate that these components are derived from organic substances in sedimentary layer of Pohang Basin. On the other hand, helium isotope ratios (3He/4He, up to 3.83 Ra) represent the significant mantle contribution in the Heunghae and Yeonil areas. Through the distribution of high 3He/4He ratios, we propose that the Heunghae, Namsong, and Jamyeong faults are the passage of mantle-derived fluids. Computed 3He fluxes of the Heunghae (120 to 3,000 atoms cm-2 sec-1), Namsong (52 to 1,300 atoms cm-2 sec-1), and Jamyeong (83 to 2,100 atoms cm-2 sec-1) faults are comparable to other major active faults around the world, reflecting either high porosity or high helium flow rates. Therefore, our results demonstrate that there are active faults near the EGS facilities, which can provide the basis for future studies.

Geosciences ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 139
Author(s):  
Giancarlo Molli ◽  
Isabelle Manighetti ◽  
Rick Bennett ◽  
Jacques Malavieille ◽  
Enrico Serpelloni ◽  
...  

Based on the review of the available stratigraphic, tectonic, morphological, geodetic, and seismological data, along with new structural observations, we present a reappraisal of the potential seismogenic faults and fault systems in the inner northwest Apennines, Italy, which was the site, one century ago, of the devastating Mw ~6.5, 1920 Fivizzano earthquake. Our updated fault catalog provides the fault locations, as well as the description of their architecture, large-scale segmentation, cumulative displacements, evidence for recent to present activity, and long-term slip rates. Our work documents that a dense network of active faults, and thus potential earthquake fault sources, exists in the region. We discuss the seismogenic potential of these faults, and propose a general tectonic scenario that might account for their development.


2021 ◽  
Author(s):  
Kwang-Il Kim ◽  
Hwajung Yoo ◽  
Seheok Park ◽  
Juhyi Yim ◽  
Linmao Xie ◽  
...  

<p>Hydraulic stimulation for the creation of an Enhanced Geothermal System (EGS) reservoir could potentially reactivate a nearby fault and result in man-made earthquakes. In November 15, 2017, an M<sub>w</sub> 5.5 earthquake, the second largest after the initiation of the South Korean national instrumental monitoring system, occurred near an EGS project in Pohang, South Korea. The earthquake occurred on a previously unmapped fault, that is here denoted the M<sub>w</sub> 5.5 Fault. A number of previous studies to model the hydraulic stimulation in the Pohang EGS project have been carried out to identify the mechanism of seismic events. Those previous studies focused on coupled hydro-mechanical processes without the consideration of pre-existing fractures and thermal effects. This study presents an investigation of the mechanisms of induced and triggered seismicity in the Pohang EGS project through three-dimensional coupled thermo-hydro-mechanical numerical simulations. Fractures intersecting the open-hole sections of two deep boreholes, PX-1 and PX-2, clearly indicated by field observations are modeled along with the M<sub>w</sub> 5.5 Fault. Models of stress-dependent permeability models are calibrated based on the numerical reproduction of the pressure-time evolution during the field hydraulic stimulations. The Coulomb failure stress change at the M<sub>w</sub> 5.5 Fault is calculated to quantify the impact of five hydraulic stimulations. In the case of PX-2 stimulations, the pore pressure buildup results in a volumetric expansion of the reservoir and thereby the perturbation of stresses is transferred to the M<sub>w</sub> 5.5 Fault. The volumetric contraction of the reservoir by the temperature reduction could slightly perturb the stress distribution at the M<sub>w</sub> 5.5 Fault. In the case of PX-1 stimulations, shear slip of the PX-1 fracture is explicitly modeled. The modeling shows that transfer of the shear stress drop by the shear slip stabilizes the M<sub>w</sub> 5.5 Fault, which is consistent with the field observation that the seismicity was not induced at the M<sub>w</sub> 5.5 Fault by the PX-1 stimulations. The cooling-induced thermal stress additionally reduces the effective normal stress of PX-1 fracture. Thus, some additional shear slip of the PX-1 fracture is induced by the thermal effect. However, the modeling shows that for both PX-1 and PX-2 stimulations, thermally-induced stress perturbations are very small compared to pressure-induced stress perturbations.</p>


2014 ◽  
Vol 56 (6) ◽  
Author(s):  
Ioannis G. Fountoulis ◽  
Spyridon D. Mavroulis

On September 13, 1986, a shallow earthquake (Ms=6.2) struck the city of Kalamata and the surrounding areas (SW Peloponnese, Greece) resulting in 20 fatalities, over 300 injuries, extensive structural damage and many earthquake environmental effects (EEE). The main shock was followed by several aftershocks, the strongest of which occurred two days later (Ms=5.4). The EEE induced by the 1986 Kalamata earthquake sequence include ground subsidence, seismic faults, seismic fractures, rockfalls and hydrological anomalies. The maximum ESI 2007 intensity for the main shock has been evaluated as IX<sub>ESI 2007</sub>, strongly related to the active fault zones and the reactivated faults observed in the area as well as to the intense morphology of the activated Dimiova-Perivolakia graben, which is a 2nd order neotectonic structure located in the SE margin of the Kalamata-Kyparissia mega-graben and bounded by active fault zones. The major structural damage of the main shock was selective and limited to villages founded on the activated Dimiova-Perivolakia graben (IX<sub>EMS-98</sub>) and to the Kalamata city (IX<sub>EMS-98</sub>) and its eastern suburbs (IX<sub>EMS-98</sub>) located at the crossing of the prolongation of two major active fault zones of the affected area. On the contrary, damage of this size was not observed in the surrounding neotectonic structures, which were not activated during this earthquake sequence. It is concluded that both intensity scales fit in with the neotectonic regime of the area. The ESI 2007 scale complemented the EMS-98 seismic intensities and provided a completed picture of the strength and the effects of the September 13, 1986, Kalamata earthquake on the natural and the manmade environment. Moreover, it contributed to a better picture of the earthquake scenario and represents a useful and reliable tool for seismic hazard assessment.


Author(s):  
R. Van Dissen ◽  
J. Begg ◽  
Y. Awata

Approximately one year after the Great Hanshin (Kobe) Earthquake, two New Zealand geologists were invited to help with the Geological Survey of Japan's paleoearthquake/active fault studies in the Kobe/Awaji area. Trenches excavated across the Nojima fault, which ruptured during the Great Hanshin Earthquake, showed evidence of past surface rupture earthquakes, with the age of the penultimate earthquake estimated at approximately 2000 years. A trench across the Higashiura fault, located 3-4 km southeast of the Nojima fault, revealed at least two past surface rupture earthquakes. The timing of the older earthquakes is not yet known, but pottery fragments found in the trench constrain the timing of the most recent earthquake at less than 500-600 years. Historical records for this part of Japan suggest that within the last 700 years there has been only one regionally felt earthquake prior to the 1995 Great Hanshin Earthquake, and this was the AD 1596 Keicho Earthquake. It thus seems reasonable to suggest that the Higashiura fault was, at least in part, the source of the AD 1596 Keicho Earthquake.


Geosciences ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 83 ◽  
Author(s):  
Rolly E. Rimando ◽  
Jeremy M. Rimando

The Vigan-Aggao Fault is a 140-km-long complex active fault system consisting of multiple traces in the westernmost part of the Philippine Fault Zone (PFZ) in northern Luzon, the Philippines. In this paper, its traces, segmentation, and oblique left-lateral strike-slip motion are determined from horizontal and vertical displacements measured from over a thousand piercing points pricked from displaced spurs and streams observed from Google Earth Pro satellite images. This work marks the first instance of the extensive use of Google Earth as a tool in mapping and determining the kinematics of active faults. Complete 3D image coverage of a major thoroughgoing active fault system is freely and easily accessible on the Google Earth Pro platform. It provides a great advantage to researchers collecting morphotectonic displacement data, especially where access to aerial photos covering the entire fault system is next to impossible. This tool has not been applied in the past due to apprehensions on the positional measurement accuracy (mainly of the vertical component). The new method outlined in this paper demonstrates the applicability of this tool in the detailed mapping of active fault traces through a neotectonic analysis of fault-zone features. From the sense of motion of the active faults in northern Luzon and of the major bounding faults in central Luzon, the nature of deformation in these regions can be inferred. An understanding of the kinematics is critical in appreciating the distribution and the preferred mode of accommodation of deformation by faulting in central and northern Luzon resulting from oblique convergence of the Sunda Plate and the Philippine Sea Plate. The location, extent, segmentation patterns, and sense of motion of active faults are critical in coming up with reasonable estimates of the hazards involved and identifying areas prone to these hazards. The magnitude of earthquakes is also partly dependent on the type and nature of fault movement. With a proper evaluation of these parameters, earthquake hazards and their effects in different tectonic settings worldwide can be estimated more accurately.


Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1631
Author(s):  
Fan ◽  
Pang ◽  
Liao ◽  
Tian ◽  
Hao ◽  
...  

The Ganzi geothermal field, located in the eastern sector of the Himalayan geothermal belt, is full of high-temperature surface manifestations. However, the geothermal potential has not been assessed so far. The hydrochemical and gas isotopic characteristics have been investigated in this study to determine the geochemical processes involved in the formation of the geothermal water. On the basis of δ18O and δD values, the geothermal waters originate from snow and glacier melt water. The water chemistry type is dominated by HCO3-Na, which is mainly derived from water-CO2-silicate interactions, as also indicated by the 87Sr/86Sr ratios (0.714098–0.716888). Based on Cl-enthalpy mixing model, the chloride concentration of the deep geothermal fluid is 37 mg/L, which is lower than that of the existing magmatic heat source area. The estimated reservoir temperature ranges from 180–210 °C. Carbon isotope data demonstrate that the CO2 mainly originates from marine limestone metamorphism, with a fraction of 74–86%. The helium isotope ratio is 0.17–0.39 Ra, indicating that the He mainly comes from atmospheric and crustal sources, and no more than 5% comes from a mantle source. According to this evidence, we propose that there is no magmatic heat source below the Ganzi geothermal field, making it a distinctive type of high-temperature geothermal system on the Tibetan Plateau.


Author(s):  
Takahiro Hanamuro ◽  
Ken-Ichi Yasue ◽  
Yoko Saito-Kokubu ◽  
Koichi Asamori ◽  
Tsuneari Ishimaru ◽  
...  

The Japanese islands are located in a tectonically active zone. The scientific base is required for assessing the geosphere stability for long-term isolation of radioactive waste in Japan. JAEA is promoting the establishment of investigation method for geotectonic events affecting geosphere stability and prediction model for the future changes of geological environments, that is necessary for site selection and safety assessment of the HLW geological disposal. For seismicity and faulting, detection techniques for active faults without topographic surface expression, such as using helium isotope ratios in hot spring gases or detection of hydrogen gas, and studies on the assessment of fault evolution have been developed. For volcanism and geothermal activity, heat sources for anomalous geothermal activity in non-volcanic regions are considered. Detection techniques for high-temperature fluids and magma deep underground, using geophysical and geochemical approaches, were constructed. For uplift, denudation and climatic/sea-level changes, a methodology to predict the future topographic change was developed. Also, for dating techniques as an essential part to proceed on these studies, C-14 and Be-10 dating using AMS and (U-Th)/He dating using QMS and ICP-MS have been developed. We are planning the establishment of assessment methods for geosphere stability including assessment of the activity of faults encountered in underground excavations, development of long-term prediction model of volcanism and hydrothermal activities, and hydrogeological analyses considering topographic change.


2020 ◽  
Vol 92 (1) ◽  
pp. 437-447
Author(s):  
Yasuhiro Suzuki ◽  
Takashi Nakata ◽  
Mitsuhisa Watanabe ◽  
Sukhee Battulga ◽  
Dangaa Enkhtaivan ◽  
...  

Abstract Destructive large earthquakes occur not only along major plate boundaries but also within the interior of plates. To establish appropriate safety measures, identifying intraplate active faults and the potential magnitude of associated earthquakes is essential before an earthquake occurs. This study was conducted to document the geomorphic expression of a previously unrecognized 50-km-long active fault in Ulaanbaatar, the capital of Mongolia. Mapping of the fault was accomplished using the Advanced Land Observation Satellite elevation dataset provided by Japan Aerospace Exploration Agency (JAXA), a stereo-scope interpretation of CORONA satellite images, the emplacement of trenches across the fault trace, and field study. The Ulaanbaatar fault (UBF) is marked by fault scarps on the surface and left-lateral stream deflections. The fault displaces late Pleistocene deposits and is thus considered to be active. Based on the length of the fault, the UBF is believed to be capable of causing earthquakes with magnitudes greater than M 7 and subsequent associated damage to buildings and heavy causalities within the metropolitan area. We strongly suggest that building resistance requirements in Ulaanbaatar should be revised to mitigate for the potential of extensive seismic damage. The results of this study can be used to revise the seismic hazard map and stipulate a new disaster prevention strategy to improve public safety in Ulaanbaatar. It is also possible that there may be other active faults in the vicinity of Ulaanbaatar, and these require investigation.


Solid Earth ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 741-763 ◽  
Author(s):  
Marco Cuffaro ◽  
Andrea Billi ◽  
Sabina Bigi ◽  
Alessandro Bosman ◽  
Cinzia G. Caruso ◽  
...  

Abstract. The Ionian Sea in southern Italy is at the center of active interaction and convergence between the Eurasian and African–Adriatic plates in the Mediterranean. This area is seismically active with instrumentally and/or historically recorded Mw>7.0 earthquakes, and it is affected by recently discovered long strike-slip faults across the active Calabrian accretionary wedge. Many mud volcanoes occur on top of the wedge. A recently discovered one (called the Bortoluzzi Mud Volcano or BMV) was surveyed during the Seismofaults 2017 cruise (May 2017). High-resolution bathymetric backscatter surveys, seismic reflection profiles, geochemical and earthquake data, and a gravity core are used here to geologically, geochemically, and geophysically characterize this structure. The BMV is a circular feature ≃22 m high and ≃1100 m in diameter with steep slopes (up to a dip of 22∘). It sits atop the Calabrian accretionary wedge and a system of flower-like oblique-slip faults that are probably seismically active as demonstrated by earthquake hypocentral and focal data. Geochemistry of water samples from the seawater column on top of the BMV shows a significant contamination of the bottom waters from saline (evaporite-type) CH4-dominated crustal-derived fluids similar to the fluids collected from a mud volcano located on the Calabria mainland over the same accretionary wedge. These results attest to the occurrence of open crustal pathways for fluids through the BMV down to at least the Messinian evaporites at about −3000 m. This evidence is also substantiated by helium isotope ratios and by comparison and contrast with different geochemical data from three seawater columns located over other active faults in the Ionian Sea area. One conclusion is that the BMV may be useful for tracking the seismic cycle of active faults through geochemical monitoring. Due to the widespread diffusion of mud volcanoes in seismically active settings, this study contributes to indicating a future path for the use of mud volcanoes in the monitoring and mitigation of natural hazards.


2018 ◽  
Author(s):  
Marco Cuffaro ◽  
Andrea Billi ◽  
Sabina Bigi ◽  
Alessandro Bosman ◽  
Cinzia G. Caruso ◽  
...  

Abstract. The Ionian Sea in southern Italy is at the center of active interaction and convergence between the Eurasian and African-Adriatic plates in the Mediterranean. This area is seismically active with instrumentally/historically-recorded Mw > 7.0 earthquakes and it is affected by recently-discovered long strike-slip faults across the active Calabrian accretionary wedge. Many mud volcanoes occur on top of the wedge. A recently-discovered one (here named Bortoluzzi Mud Volcano, BMV) was surveyed during the Seismofaults 2017 cruise (May 2017). Bathymetric-backscatter surveys, seismic reflection profiles, geochemical and earthquake data as well as a gravity core are here used to geologically, geochemically, and geophysically characterize this structure. The BMV is a circular feature ≃22 m high and ≃1100 m in diameter with steep slopes (up to a dip of 22°). It sits atop the Calabrian accretionary wedge and a system of flower-like oblique-slip faults that are probably seismically active as demonstrated by earthquake hypocentral and focal data. Geochemistry of water samples from the seawater column on top of the BMV shows a significant contamination of the bottom waters from saline (evaporite-type) CH4-dominated crustal-derived fluids similar to the fluids collected from a mud volcano located in the Calabria main land over the same accretionary wedge. These results attest for the occurrence of an open crustal conduit through the BMV down to at least the Messinian evaporites at about −3000 m. This evidence is also substantiated by Helium isotope ratios and by different geochemical data from three sea water columns located elsewhere in the Ionian Sea. Conclusions are drawn on the origin of the BMV and on the potential of this type of structures for tracking the seismic cycle of active faults. Due to the widespread diffusion of mud volcanoes in seismically active settings, this study may contribute to indicate a potential and feasible future path for the use of these ubiquitous structures in favor of the mitigation of natural hazards.


Sign in / Sign up

Export Citation Format

Share Document