scholarly journals Effects of Strong Acidic Electrolyzed Water in Wound Healing via Inflammatory and Oxidative Stress Response

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Ailyn Fadriquela ◽  
Ma Easter Joy Sajo ◽  
Johny Bajgai ◽  
Dong-Heui Kim ◽  
Cheol-Su Kim ◽  
...  

Strong acidic electrolyzed water (StAEW) is known to inactivate microorganisms but is not fully explored in the medical field. This study is aimed at exploring StAEW as a potential wound care agent and its mechanism. StAEW (pH: 2.65, ORP: 1159 mV, ACC: 32.1 ppm) was sprayed three times a day to the cutaneous wounds of hairless mice for seven days. Wound morphological and histological features and immune-redox markers were compared with saline- (Sal-) and alcohol- (Alc-) treated groups. Results showed that the StAEW group showed a significantly higher wound healing percentage than the Sal group on days 2, 4, 5, and 6 and the Alc group on day 4. The StAEW group also showed earlier mediation on proinflammatory cytokines such as tumor necrosis factor-α, interleukin- (IL-) 6, IL-1β, and keratinocyte chemoattractant. In addition, basic fibroblast growth factor and platelet-derived growth factor were found to be significantly changed in favor of the fibroblast synthesis and angiogenesis. In line, the StAEW group showed a controlled amount of ROS and significantly decreased compared to the Alc group. The StAEW group also favored oxidative stress balance through antioxidant responses. Additionally, matrix metalloproteinases (MMP) 9 and MMP1 were also modulated for keratinocyte and cell migration. Taken together, this study has proven the wound healing effect of StAEW and its earlier mediation through oxidative and inflammatory responses.

2017 ◽  
Vol 40 (9) ◽  
pp. 1423-1431 ◽  
Author(s):  
Hae Sun You ◽  
Ailyn Fadriquela ◽  
Ma Easter Joy Sajo ◽  
Johny Bajgai ◽  
Jesmin Ara ◽  
...  

2021 ◽  
Vol 12 ◽  
pp. 204173142199975
Author(s):  
Jihyun Kim ◽  
Kyoung-Mi Lee ◽  
Seung Hwan Han ◽  
Eun Ae Ko ◽  
Dong Suk Yoon ◽  
...  

Patients with diabetes experience impaired growth factor production such as epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF), and they are reportedly involved in wound healing processes. Here, we report dual growth factor-loaded hyaluronate collagen dressing (Dual-HCD) matrix, using different ratios of the concentration of stabilized growth factors—stabilized-EGF (S-EGF) and stabilized-bFGF (S-bFGF). At first, the optimal concentration ratio of S-EGF to S-bFGF in the Dual-HCD matrix is determined to be 1:2 in type I diabetic mice. This Dual-HCD matrix does not cause cytotoxicity and can be used in vivo. The wound-healing effect of this matrix is confirmed in type II diabetic mice. Dual HCD enhances angiogenesis which promotes wound healing and thus, it shows a significantly greater synergistic effect than the HCD matrix loaded with a single growth factor. Overall, we conclude that the Dual-HCD matrix represents an effective therapeutic agent for impaired diabetic wound healing.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jiaxin Ding ◽  
Binbin Gao ◽  
Zhenhua Chen ◽  
Xifan Mei

Bacterial infection and its severe oxidative stress reaction will cause damage to skin cell mitochondria, resulting in long-lasting wound healing and great pain to patients. Thus, delayed wound healing in diabetic patients with Staphylococcus aureus infection is a principal challenge worldwide. Therefore, novel biomaterials with multifunction of bacterial membrane destruction and skin cell mitochondrial protection are urgently needed to be developed to address this challenge. In this work, novel gold cage (AuNCs) modified with epigallocatechin gallate (EGCG) were prepared to treat delayed diabetic wounds. The results showed that Au-EGCG had a high and stable photothermal conversion efficiency under near-infrared irradiation, and the scavenging rate of Au-EGCG for S. aureus could reach 95%. The production of large amounts of reactive oxygen species (ROS) leads to the disruption of bacterial membranes, inducing bacterial lysis and apoptosis. Meanwhile, Au-EGCG fused into hydrogel (Au-EGCG@H) promoted the migration and proliferation of human umbilical cord endothelial cells, reduced cellular mitochondrial damage and oxidative stress in the presence of infection, and significantly increased the basic fibroblast growth factor expression and vascular endothelial growth factor. In addition, animal studies showed that wound closure was 97.2% after 12 days of treatment, and the healing of chronic diabetic wounds was significantly accelerated. Au-EGCG nanoplatforms were successfully prepared to promote cell migration and angiogenesis in diabetic rats while removing S. aureus, reducing oxidative stress in cells, and restoring impaired mitochondrial function. Au-EGCG provides an effective, biocompatible, and multifunctional therapeutic strategy for chronic diabetic wounds.


2010 ◽  
Vol 2010 ◽  
pp. 1-8 ◽  
Author(s):  
Na-Young Park ◽  
Giuseppe Valacchi ◽  
Yunsook Lim

Inflammatory response is considered the most important period that regulates the entire healing process. Conjugated linoleic acid (CLA), a class of linoleic acid positional and geometric isomers, is well known for its antioxidant and anti-inflammatory properties. We hypothesized that dietary CLA supplementation accelerates cutaneous wound healing by regulating antioxidant and anti-inflammatory functions. To investigate wound closure rates and inflammatory responses, we used a full-thickness excisional wound model after 2-week treatments with control, 0.5%, or 1% CLA-supplemented diet. Mice fed dietary CLA supplementation had reduced levels of oxidative stress and inflammatory markers. Moreover, the wound closure rate was improved significantly in mice fed a 1% CLA-supplemented diet during early stage of wound healing (inflammatory stage). We conclude that dietary CLA supplementation enhances the early stage of cutaneous wound healing as a result of modulating oxidative stress and inflammatory responses.


2021 ◽  
Vol 17 (9) ◽  
pp. 1840-1849
Author(s):  
Mao Li ◽  
Min Hu ◽  
Honglian Zeng ◽  
Bo Yang ◽  
Yi Zhang ◽  
...  

Native skin repair requires wound care products that not only protect the wound from bacterial infection, but also accelerate wound closure and minimize scarring. Nanomaterials have been widely applied for wound healing due to their multifunctional properties. In a previous study, we prepared and characterized electrospinning zinc oxide/silver/polyvinylpyrrolidone/polycaprolactone (ZnO/Ag/PVP/PCL) nanofibers using ZnO and Ag nanoparticles, and evaluated their antibacterial effect in vitro. In this work, further characterization studies were performed, which confirmed that the ZnO/Ag nanoparticles were physically embedded and evenly distributed in the ZnO/Ag/PVP/PCL nanofibers, enabling the sustained release of Ag and Zn. In addition, the bimetallic nanofibers showed satisfactory fluid handling and flexibility. In vivo wound healing and histology studies showed that the ZnO/Ag/PVP/PCL nanofibers had a better anti-inflammatory, skin tissue regeneration, and wound healing effect than monometallic nanofibers or a commercially available wound plaster (Yunnan Baiyao). Therefore, ZnO/Ag/PVP/PCL bimetallic nanofibers may be a safe, efficient biomedical dressing for wound healing.


2019 ◽  
Vol 35 (1) ◽  
Author(s):  
Ju-Bin Kang ◽  
Dong-Ju Park ◽  
Murad-Ali Shah ◽  
Myeong-Ok Kim ◽  
Phil-Ok Koh

Abstract Lipopolysaccharide (LPS) acts as an endotoxin, releases inflammatory cytokines, and promotes an inflammatory response in various tissues. This study investigated whether LPS modulates neuroglia activation and nuclear factor kappa B (NF-κB)-mediated inflammatory factors in the cerebral cortex. Adult male mice were divided into control animals and LPS-treated animals. The mice received LPS (250 μg/kg) or vehicle via an intraperitoneal injection for 5 days. We confirmed a reduction of body weight in LPS-treated animals and observed severe histopathological changes in the cerebral cortex. Moreover, we elucidated increases of reactive oxygen species and oxidative stress levels in LPS-treated animals. LPS administration led to increases of ionized calcium-binding adaptor molecule-1 (Iba-1) and glial fibrillary acidic protein (GFAP) expression. Iba-1 and GFAP are well accepted as markers of activated microglia and astrocytes, respectively. Moreover, LPS exposure induced increases of NF-κB and pro-inflammatory factors, such as interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). Increases of these inflammatory mediators by LPS exposure indicate that LPS leads to inflammatory responses and tissue damage. These results demonstrated that LPS activates neuroglial cells and increases NF-κB-mediated inflammatory factors in the cerebral cortex. Thus, these findings suggest that LPS induces neurotoxicity by increasing oxidative stress and activating neuroglia and inflammatory factors in the cerebral cortex.


2020 ◽  
Vol 21 (14) ◽  
pp. 4952 ◽  
Author(s):  
Fernando Pereira Beserra ◽  
Lucas Fernando Sérgio Gushiken ◽  
Ana Júlia Vieira ◽  
Danilo Augusto Bérgamo ◽  
Patrícia Luísa Bérgamo ◽  
...  

Skin wound healing is a highly complex event that involves different mediators at the cellular and molecular level. Lupeol has been reported to possess different biological activities, such as anti-inflammatory, antioxidant, antidiabetic, and in vitro wound healing properties, which motivated us to proceed with in vivo studies. We aimed to investigate the wound healing effect of lupeol-based cream for 3, 7, and 14 days. Wound excisions were induced on the thoraco-lumbar region of rats and topically treated immediately after injury induction. Macroscopic, histopathological, and immunohistochemical analyses were performed. Cytokine levels were measured by ELISA and gene expression was evaluated by real-time RT-qPCR. Our results showed a strong wound-healing effect of lupeol-based cream after 7 and 14 days. Lupeol treatment caused a reduction in proinflammatory cytokines (TNF-a, IL-1β, and IL-6) and gene and protein NF-κB expression, and positively altered IL-10 levels, showing anti-inflammatory effects in the three treatment periods. Lupeol treatment showed involvement in the proliferative phase by stimulating the formation of new blood vessels, increasing the immunostaining of Ki-67 and gene expression, and immunolabeling of vascular endothelial growth factor (VEGF) and epidermal growth factor (EGF), and increasing gene expression of transforming growth factor beta-1 (TGF-β1) after seven days of treatment. Lupeol was also involved in the tissue regeneration phase by increasing the synthesis of collagen fibers noted in the three treatment periods analyzed. Our findings suggest that lupeol may serve as a novel therapeutic option to treat cutaneous wounds by regulating mechanisms involved in the inflammatory, proliferative, and tissue-remodeling phases.


Sign in / Sign up

Export Citation Format

Share Document