scholarly journals A Novel Bioflocculant from Raoultella planticola Enhances Removal of Copper Ions from Water

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Fancheng Zeng ◽  
Liang Xu ◽  
Caiyun Sun ◽  
Hong Liu ◽  
Libo Chen

Copper is one of the most toxic heavy metals. In this work, a sampling survey of copper ions in the water of Songhua River flowing through the chemical and living areas of Jilin City was studied. A new bioflocculant from Raoultella planticola was obtained. The investigation of Songhua River flowing through Jilin City shows that the copper concentration is between 0.07 ppb and 0.16 ppb. The bioflocculant supporting graphite oxide (GO) as a bioflocculant inducer used in this study has been utilized in treatment of copper ions in water. GO and bioflocculant infrared radiation (IR) spectrum and zeta potential were studied. Flocculational conditions of copper ion (0.2 ppm) were modeled and optimized using RSM (response surface methodology). Our data showed that flocculation efficiency was over 80%. Significant influencing factors and variables were pH, flocculation time, bioflocculant dosage, and GO inducer which had major impact effects on flocculation efficiency. The highest flocculation efficiency which is 86.01% was achieved at pH=5, at 1.62 h and 13.11 mg bioflocculant with 13.11 mg GO as an inducer. However, temperature (A) and GO inducer were significant impact factors on the flocculation efficiency.

1990 ◽  
Vol 68 (2) ◽  
pp. 476-479
Author(s):  
Donald C. Wigfield ◽  
Douglas M. Goltz

The kinetics of the reconstitution reaction of apotyrosinase with copper (II) ions are reported. The reaction is pseudo first order with respect to apoenzyme and the values of these pseudo first order rate constants are reported as a function of copper (II) concentration. Two copper ions bind to apoenzyme, and if the second one is rate limiting, the kinetically relevant copper concentration is the copper originally added minus the amount used in binding the first copper ion to enzyme. This modified copper concentration is linearly related to the magnitude of the pseudo first order rate constant, up to a copper concentration of 1.25 × 10−4 M (10-fold excess), giving a second order rate constant of 7.67 × 102 ± 0.93 × 102 M−1∙s−1.Key words: apotyrosinase, copper, tyrosinase.


2015 ◽  
Vol 804 ◽  
pp. 239-242
Author(s):  
Duongruitai Nicomrat ◽  
Jirasak Tharajak

Copper ions are commonly contaminated in the effluents from many electronic factory. In copper filtration, most filter types are usually expensive and causes toxic residues and creates another health and environmental problem. Therefore, this research has been developed a copper filtration approach based on homemade non-hazardous residues of banana peels, unmeshed sand, and charcoal. The results showed that baked, minced banana peels media could absorb synthetic water having copper ion at 50 ppm with filtration efficiency of 70% within 2 hr. Baked minced banana peels in combination with sand and charcoal could adsorb Copper (II) at 50 mg/ mL more than 80%. However, the swollen structure of banana peels during copper (II) filtration caused limit filtration efficiency to 4-5 hour extraction period. The tentative wastewater treatment application is, therefore, the use of bio-adsorbent for effective adsorption of toxic heavy metals from effluents open discarded from agricultural wastes in the environment.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1099
Author(s):  
Sheng-Chun Hung ◽  
Chih-Cheng Lu ◽  
Yu-Ting Wu

The optical characteristics of copper ion detection, such as the photometric absorbance of specific wavelengths, exhibit significant intensity change upon incident light into the aqueous solutions with different concentrations of metal ions due to the electron transition in the orbit. In this study, we developed a low-cost, small-size and fast-response photoelectric sensing prototype as an optic sensor for copper (Cu) ions detection by utilizing the principle of optical absorption. We quantified the change of optical absorbance from infra-red (IR) light emitting diodes (LEDs) upon different concentrations of copper ions and the transmitted optical signals were transferred to the corresponding output voltage through a phototransistor and circuit integrated in the photoelectric sensing system. The optic sensor for copper (Cu) ions demonstrated not only excellent specificity with other metal ions such as cadmium (Cd), nickel (Ni), iron (Fe) and chloride (Cl) ions in the same aqueous solution but also satisfactory linearity and reproducibility. The sensitivity of the preliminary sensing system for copper ions was 29 mV/ppm from 0 to 1000 ppm. In addition, significant ion-selective characteristics and anti-interference capability were also observed in the experiments by the proposed approach.


2016 ◽  
Vol 45 (18) ◽  
pp. 7665-7671 ◽  
Author(s):  
Shanshan Guo ◽  
Shousi Lu ◽  
Pingxiang Xu ◽  
Yi Ma ◽  
Liang Zhao ◽  
...  

We report a biomimetic method to synthesize needle-like calcium phosphate (CaP) using carbon dots (CDs) and sodium carboxymethylcellulose as dual templates. The CaP/CDs were capable of cell labeling and selective detection of copper ions in drinking water.


2012 ◽  
Vol 24 (05) ◽  
pp. 453-459 ◽  
Author(s):  
Shenhsiung Lin ◽  
Chia-Chen Chang ◽  
Chii-Wann Lin

Heavy metals greatly influence animal physiology, even at small doses. Among these metals, the copper ion is of great concern due to its effects on humans and wide applications in industry. Compared to atomic absorption spectroscopy and inductively coupled plasma-mass spectrometry, which destroy the samples that are analyzed, optical techniques do not decompose the analyte and have become a popular field of recent research. In this paper, we combined a novel optical detector that did not require sample-labeling, called surface plasmon resonance (SPR), with chitosan to detect copper ions by modifying the functional groups of chitosan through pH modification. Compared to other optical detectors, the SPR system was relatively fast and involved fewer experimental confounding factors. The three-dimensional structure of chitosan was used to obtain lower detection limits. Moreover, modification of the chitosan functional groups resulted in efficient regeneration by controlling the pH. A detection limit of 0.1 μM was obtained (linear range: 0.5–10 μM, R2 = 0.976), and the specificity was certified by comparing the copper ion with six other ions. Additionally, we successfully regenerated the SPR chips by modifying the functional groups. In conclusion, the chitosan–SPR system detected copper ions with improved detection limits using a quick and simple regeneration method.


2021 ◽  
Author(s):  
khaled Mostafa ◽  
H. Ameen ◽  
A. Ebessy ◽  
A. El-Sanabary

Abstract Our recently tailored and fully characterized poly (AN)-starch nanoparticle graft copolymer having 60.1 G.Y. % was used as a starting substrate for copper ions removal from waste water effluent after chemical modification with hydroxyl amine via oximation reaction. This was done to change the abundant nitrile groups in the above copolymer into amidoxime one and the resultant poly (amidoxime) resin was used as adsorbent for copper ions. The resin was characterized qualitatively via rapid vanadium ion test and instrumentally by FT-IR spectra and SEM morphological analysis to confirm the presence of amidoxime groups. The adsorption capacity of the resin was done using the batch technique, whereas the residual copper ions content in the filtrate before and after adsorption was measured using atomic adsorption spectrometry. It was found that the maximum adsorption capacity of poly (amidoxime) resin was 115.2 mg/g at pH 7, 400ppm copper ions concentration and 0.25 g adsorbent at room temperature. The adsorption, kinetics and isothermal study of the process is scrutinized using different variables, such as pH, contact time, copper ion concentration and adsorbent dosage. Different kinetics models comprising the pseudo-first-order and pseudo-second-order have been applied to the experimental data to envisage the adsorption kinetics. It was found from kinetic study that pseudo-second-order rate equation was better than pseudo-first-order supporting the formation of chemisorption process. While, in case of isothermal study, the examination of calculated correlation coefficient (R2) values showed that the Langmuir model provide the best fit to experimental data than Freundlich one.


2021 ◽  
Vol 2129 (1) ◽  
pp. 012010
Author(s):  
B Haryanto ◽  
S E Saragih ◽  
R Tambun ◽  
H Harahap ◽  
K Manik ◽  
...  

Abstract Carbon charcoal was made from rambutan rods and used as an adsorbent. A gram 70/100 mesh size of adsorbent was then used to adsorb 100 ml of copper ion solution with a 70 ppm concentration. In this investigation, the batch procedure was used without shaking (naturally). The charcoal carbon rambutan ability to remove the copper ion was measured by AAS. The percentage result was 48,135% or about 33,694 ppm. SEM and EDX instrument analysis have applied to confirm the presence of copper ions on the adsorbent surface. The copper ion was found at a concentration of 0.09 percent of the total weight. The carbon charcoal adsorbent in rambutan rods has the ability to purify the water contaminated by metal ions.


1978 ◽  
Vol 33 (10) ◽  
pp. 1165-1176 ◽  
Author(s):  
George Sosnovsky ◽  
Gary Karas

Abstract The reactions of dialkyl t-butylperoxy phosphates (1) and alkyl t-butylperoxy alkylphosphonates (2) with cyclohexene in the presence of a catalyticamount of copper (I) bromide at 80 °C in benzene afforded the corresponding phosphates (3) and phosphonates (4) in 50 to 70% yield. The analogous reaction of 1 (R = i-C3H7) with cycloheptene also gave the corresponding phosphate (8, n = 3)in 71% yield. However, phosphorylated cyclopentene (8, n = 1) and cyclooctene (8, n - 4) derivatives could not be isolated because of their thermal instability, and only the corresponding 1,3-cyclopentadiene and 1,3-cyclooctadiene were obtained in 92 and 38% yields, respectively. Thermal decomposition of 3 and 4 in the absence of a solvent at 110-115 °C gave 1,3-cyclohexadiene in 70 to 90% yield. For identification purposes, compounds 3 and 4 were prepared from the corresponding imidazole derivatives 5 and 6 and 2-cyelohexen- l-ol (7).A mechanism is proposed for the copper ion catalyzed reaction of 1 and 2 with cycloalkenes.


Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1864 ◽  
Author(s):  
Ziling Cao ◽  
Chen Zhang ◽  
Zhuoxin Yang ◽  
Qing Qin ◽  
Zhihua Zhang ◽  
...  

Carbon aerogel (CA) has a rich porous structure, in which micropores and mesopores provide a huge specific surface area to form electric double layers. This property can be applied to the application of capacitive deionization (CDI). The adsorption effect of CA electrode on Cu2+ in an aqueous solution was explored for solving heavy metal water pollution. The CAs were synthesized by a sol-gel process using an atmospheric drying method. The structure of CAs was characterized by scanning in an electron microscope (SEM) and nitrogen adsorption/desorption techniques. The adsorption system was built using Cu2+ solution as the simulation of heavy metal pollution solution. The control variate method was used to investigate the effect of the anion species in copper solution, the molar ratio of resorcinol to catalyst (R/C) of CA, and the applied voltage and concentration of copper ion on the adsorption results.


2009 ◽  
Vol 63 (5) ◽  
Author(s):  
Erzsébet-Sára Bogya ◽  
Réka Barabás ◽  
Alexandra Csavdári ◽  
Valentina Dejeu ◽  
Ioan Bâldea

AbstractThis paper aims to increase the sorption capacity of hydroxyapatite and to find the best apatite-based material for metal ions sorption. The sorption process of copper ions from water solutions by HAP and structurally modified HAP was carried out in this work. Structural modifications of HAP were realized in the preparation phase by an addition of sodium silica into the reaction medium. The prepared materials were characterized by physical-chemical methods: IR, electron-microscopy and X-ray diffraction. The composites characterized were tested in kinetic studies regarding ion exchange and adsorption of Cu2+. It was revealed that the silica content, particle size and initial copper ion concentration influence the process rate.


Sign in / Sign up

Export Citation Format

Share Document