scholarly journals DEC2 Serves as Potential Tumor Suppressor in Breast Carcinoma

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Wentong Fang ◽  
Qian Li ◽  
Min Wang ◽  
Mingjie Zheng ◽  
Huirong Xu

Background. Identification of new biomarkers can facilitate the development of effective therapeutic strategies in breast cancer (BC). Data from previous studies have revealed that differentiated embryonic chondrocyte gene (DEC) 1 and DEC2 might involve in the progression of various cancer types. We explored the expression profiles and function of DEC1/2 in BC patients in this study. Methods. The mRNA expression of DEC1/2 in BC patients and cell lines were taken from the Oncomine and Cancer Cell Line Encyclopedia database. The prognostic impacts of DEC1/2 were mined from the bc-GenExMiner and Kaplan–Meier plotter database. The impact of DEC1/2 genomic alterations on patient survival was calculated by cBioPortal. DEC2 protein expressions were confirmed by Western blotting (WB) in 10 pairs of BC samples. In addition, DEC2 sgRNA was constructed to confirm its affection on cell viability, invasion, and colony formation. Results. The DEC1 and DEC2 mRNA levels are both lower in BC tissues than normal tissues. DEC1/2 expression was high in progesterone receptor (PR) positive BC patients (P=0.0023), but low in human epidermal growth factor receptor 2 (HER2) positive patients (P<0.0001). Lower DEC2 mRNA level has significant association with more aggressive pathogenic grade (P<0.0001) and worse overall survival (OS) of BC patients (P=5.2×10−6). Subgroup analysis showed that low DEC2 level was correlated with worse OS in estrogen receptor (ER) positive BC (P=0.008). DEC2 (P=0.00029) alteration was significantly correlated with worse OS in BC patients. WB results also confirmed the lower DEC2 protein levels in BC samples than their paired normal tissues. And, DEC2 silencing by sgRNA resulted in a significant increasing in cell viability, invasion, and colony formation. Conclusion. DEC2 might serve as a tumor suppressor, and its disfunction may involve in the tumorigenesis and indicate bad clinical outcomes in BC patients.

2005 ◽  
Vol 17 (2) ◽  
pp. 47 ◽  
Author(s):  
Marc-André Sirard ◽  
Isabelle Dufort ◽  
Maud Vallée ◽  
Lyne Massicotte ◽  
Catherine Gravel ◽  
...  

New insights into the early development of large mammals are becoming available through the measurement of differential mRNA levels in oocytes and preimplantation embryos. These advances in knowledge are rapidly picking up in pace, mainly owing to the advantages brought by new molecular biology approaches being developed. The possibility of amplifying the starting material and therefore making measurements in single embryo units is now feasible. With these tools, the evaluation of variations in gene expression patterns during the preimplantation period or the impact of culture on mRNA levels is now possible. However, it is important to keep in mind that these methods still have limitations associated with sample preparation or the use of the appropriate controls. Even proper methods of analysis are very important to achieve the full benefit of the application of these tools. The present paper describes some of the potential, as well as limitations, of mRNA level analysis in early embryos, especially for microarray analysis. We have generated a bovine cDNA array (>2000 clones) that contains expressed sequence tags (ESTs) collected from various preimplantation development stages. Using this chip, we have initiated the characterisation of global mRNA level patterns of several key developmental stages from the immature oocyte to the blastocyst stage. As expected, the hybridisation results indicate very different expression profiles involving hundreds of genes when comparing oocyte and blastocyst samples to a reference mRNA sample made from a pool of ESTs from pooled somatic tissues. Although this array is still in its preliminary stage and the EST bank has not been processed to contain only unigenes, it is already a very useful tool for discovering candidate genes that may play important roles during early embryonic life.


Open Medicine ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. 1061-1069
Author(s):  
Jingjing Zhang ◽  
Yuanyuan Yang ◽  
Hongyu Liu ◽  
Hongyi Hu

Abstract Nasopharyngeal carcinoma (NPC) is characterized by high morbidity and morality, especially in Southern China. Transcription factors intensively participate in the initiation and development of NPC. This study aimed to investigate the roles of Src-1 in NPC. mRNA level was determined by qRT-PCR. Western blot was carried out for the protein level. CCK-8 assay was performed to determine cell viability, colony formation for NPC cell proliferation, and transwell for cell migration and invasion ability. The results showed Steroid receptor coactivator 1 (Src-1) was overexpressed in SNE-2 and 6-10B. The expression of Src-1 and SP2 was in positive correlation. Overexpression of Src-1 promoted the cell viability, colony formation, and epithelial–mesenchymal transition (EMT), manifested by the increase of migration and invasion ability, while knockdown of Src-1 exerted opposite effects. Additionally, knockdown or overexpression of SP2 reversed the effects of overexpressed or downregulated Src-1, which was reversed by the depletion of SP2. Moreover, Src-1 interacted with SP2 to regulate EMT-related genes such as E-cad, N-cad, Vimentin, and ZEB1, and proliferation- and apoptosis-related genes, such as bax, cytochrome c, and cleaved caspase3 and bcl-2. Thus, blocking the interaction between Src-1 and SP2 may be a therapeutic target for inhibiting the metastasis of NPC.


Metabolites ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 280
Author(s):  
Laila Naif Al-Harbi ◽  
Pandurangan Subash-Babu ◽  
Manal Abdulaziz Binobead ◽  
Maha Hussain Alhussain ◽  
Sahar Abdulaziz AlSedairy ◽  
...  

Controlled production of cyclin dependent kinases (CDK) and stabilization of tumor suppressor genes are the most important factors involved in preventing carcinogenesis. The present study aimed to explore the cyclin dependent apoptotic effect of nymphayol on breast cancer MCF-7 cells. In our previous study, we isolated the crystal from a chloroform extract of Nymphaea stellata flower petals and it was confirmed as nymphayol (17-(hexan-2-yl)-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-3-ol) using x-ray diffraction (XRD), Fourier transform infrared (FTIR), and mass spectroscopy (MS) methods. The cytotoxic effect of nymphayol on MCF-7 cells were analyzed using the 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The cellular and nuclear damage was determined using propidium iodide (PI) and acridine orange/ethidium bromide (AO/ErBr) staining. Tumor suppressor and apoptosis related mRNA transcript levels were determined using real-time polymerase chain reaction (RT-PCR). Nymphayol potentially inhibits MCF-7 cell viability up to 78%, and the IC50 value was observed as 2.8 µM in 24 h and 1.4 µM in 48 h. Treatment with nymphayol significantly increased reactive oxygen species (ROS) level and the tunnel assay confirmed DNA damage. We found characteristically 76% apoptotic cells and 9% necrotic cells in PI and AO/ErBr staining after 48 h treatment with 2.8 µM of nymphayol. Gene expression analysis confirmed significantly (p ≤ 0.001) increased mRNA levels of cyclin dependent kinase inhibitor 2A (Cdkn2a), retinoblastoma protein 2 (pRb2), p53, nuclear factor erythroid 2-factor 2 (Nrf2), caspase-3, and decreased B-cell lymphoma 2 (Bcl-2), murine double minute 2 (mdm2), and proliferating cell nuclear antigen (PCNA) expression after 48 h. Nymphayol effectively inhibited breast cancer cell viability, and is associated with early expression of Cdkn2a, pRb2, and activation of p53 and caspases.


2020 ◽  
Vol 66 (1) ◽  
pp. 89-94
Author(s):  
T.S. Kalinina ◽  
V.V. Kononchuk ◽  
S.V. Sidorov ◽  
L.F. Gulyaeva

Breast cancer (BC) is the most common cancer among women. It is known that the prolactin receptor (PRLR) may play a role in breast carcinogenesis, but the available data are often contradictory. To get a more complete picture of the relationship between the receptor and mammary gland carcinogenesis, we examined the association between changes in PRLR expression level and tumor subtype (and its main characteristics). To do this, using real-time PCR, we evaluated the level of PRLR mRNA in BC tissue samples and untransformed adjoining tissue samples (89 pairs). Since the androgen receptor (AR) has begun to be seen as a prognostic marker in breast cancer, we also evaluated the association between mRNA levels of AR and PRLR. We found a significant increase in PRLR expression in luminal subtypes; the highest level of PRLR mRNA was detected in luminal A subtype. In HER2-positive ER-, PR-negative BC, the PRLR mRNA level decreases in tumor tissues compared with untransformed tissues. High PRLR expression is also associated with smaller tumor size in luminal B HER2-negative subtype. In ER-, PR-negative tumors, PRLR expression is associated with AR expression: PRLR mRNA level is increased when AR mRNA level is reduced by more than 8 times in triple-negative tumors; in contrast, in HER2-positive subtype it decreases more significantly when AR expression is reduced by more than 3 times. A tendency towards an increase in PRLR expression with an increase in the AR mRNA level was also discovered in luminal subtypes. The level of PRLR expression depends on the age of patients. In luminal A, PRLR expression is higher in patients under 65 years. In contrast, in luminal B HER2-negative and triple-negative BC, reduced PRLR expression was observed in patients under the age of 40 years and under the age of 50 years, respectively. In this group of patients under the age of 40 years with luminal B HER2-negative BC, ER expression was also reduced (0-4 score according to the IHC assay). Thus, PRLR probably plays a different role in the development and progression of BC: in luminal A and luminal B HER2-positive subtypes PRLR may act as an oncogen, and in luminal B HER2-negative and ER-, PR-negative subtypes can play a tumor suppressor role.


2020 ◽  
Vol 7 (2) ◽  
pp. 51
Author(s):  
Jenna L. Gordon ◽  
Melissa M. Reynolds ◽  
Mark A. Brown

Neuroblastoma, the most common extracranial solid tumor in children, accounts for 15% of all pediatric cancer deaths. Pharmaceutical applications of S-Nitrosylation, which, under normal conditions is involved with a host of epigenetic and embryological development pathways, have exhibited great potential for use as adjuvant therapeutics in the clinical management of cancer. Herein, an evaluation of the impact of nitric oxide (NO) as a potent anticancer agent on murine neuroblastoma cells is presented. Excitingly cell viability, colony formation, and non-carcinogenic cell analysis illustrate the significance and practicality of NO as a cytotoxic anticancer therapeutic. Resazurin, WST-8 (2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt), and MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphyltetrazolium bromide) assays consistently displayed a moderate, ~20–25% reduction in cell viability after exposure to 1 mM S-Nitrosoglutathione (GSNO). A colony formation assay demonstrated that treated cells no longer exhibited colony formation capacity. Identically GSNO-treated Adult Human Dermal Fibroblasts (HDFa) exhibited no decrease in viability, indicating potential discrimination between neoplastic and normal cells. Collectively, our findings indicate a potential application for NO as an adjuvant therapeutic in the clinical management of neuroblastoma.


2020 ◽  
Vol 21 (3) ◽  
pp. 866 ◽  
Author(s):  
Bernadett Szilágyi ◽  
Zsolt Fejes ◽  
Szilárd Póliska ◽  
Marianna Pócsi ◽  
Zsolt Czimmerer ◽  
...  

In sepsis, platelets may become activated via toll-like receptors (TLRs), causing microvascular thrombosis. Megakaryocytes (MKs) also express these receptors; thus, severe infection may modulate thrombopoiesis. To explore the relevance of altered miRNAs in platelet activation upon sepsis, we first investigated sepsis-induced miRNA expression in platelets of septic patients. The effect of abnormal Dicer level on miRNA expression was also evaluated. miRNAs were profiled in septic vs. normal platelets using TaqMan Open Array. We validated platelet miR-26b with its target SELP (P-selectin) mRNA levels and correlated them with clinical outcomes. The impact of sepsis on MK transcriptome was analyzed in MEG-01 cells after lipopolysaccharide (LPS) treatment by RNA-seq. Sepsis-reduced miR-26b was further studied using Dicer1 siRNA and calpain inhibition in MEG-01 cells. Out of 390 platelet miRNAs detected, there were 121 significantly decreased, and 61 upregulated in sepsis vs. controls. Septic platelets showed attenuated miR-26b, which were associated with disease severity and mortality. SELP mRNA level was elevated in sepsis, especially in platelets with increased mean platelet volume, causing higher P-selectin expression. Downregulation of Dicer1 generated lower miR-26b with higher SELP mRNA, while calpeptin restored miR-26b in MEG-01 cells. In conclusion, decreased miR-26b in MKs and platelets contributes to an increased level of platelet activation status in sepsis.


2020 ◽  
Vol 21 (24) ◽  
pp. 9584
Author(s):  
Filipa Quintela Vieira ◽  
Ângela Marques-Magalhães ◽  
Vera Miranda-Gonçalves ◽  
Ricardo Ferraz ◽  
Mónica Vieira ◽  
...  

Breast (BrCa) and prostate (PCa) cancers are the most common malignancies in women and men, respectively. The available therapeutic options for these tumors are still not curative and have severe side effects. Therefore, there is an urgent need for more effective antineoplastic agents. Herein, BrCa, PCa, and benign cell lines were treated with two ionic liquids and two quinoxalines and functional experiments were performed—namely cell viability, apoptosis, cytotoxicity, and colony formation assays. At the molecular level, an array of gene expressions encompassing several molecular pathways were used to explore the impact of treatment on gene expression. Although both quinoxalines and the ionic liquid [C2OHMIM][Amp] did not show any effect on the BrCa and PCa cell lines, [C16Pyr][Amp] significantly decreased cell viability and colony formation ability, while it increased the apoptosis levels of all cell lines. Importantly, [C16Pyr][Amp] was found to be more selective for cancer cells and less toxic than cisplatin. At the molecular level, this ionic liquid was also associated with reduced expression levels of CPT2, LDHA, MCM2, and SKP2, in both BrCa and PCa cell lines. Hence, [C16Pyr][Amp] was shown to be a promising anticancer therapeutic agent for BrCa and PCa cell lines.


2001 ◽  
Vol 5 (3) ◽  
pp. 119-128 ◽  
Author(s):  
S. ANANTH KARUMANCHI ◽  
LIANWEI JIANG ◽  
BERTRAND KNEBELMANN ◽  
ALAN K. STUART-TILLEY ◽  
SETH L. ALPER ◽  
...  

Mutations in the von Hippel-Lindau (VHL) tumor suppressor gene are thought to play a critical role in the pathogenesis of both sporadic and VHL disease-associated clear-cell renal carcinomas (RCC). Differential display-PCR identified the AE2 anion exchanger as a candidate VHL target gene. AE2 mRNA and polypeptide levels were approximately threefold higher in 786-O VHL cells than in 786-O Neo cells. In contrast, Cl−/HCO3− exchange activity in 786-O VHL cells was 50% lower than in 786-O Neo cells. Since resting intracellular pH (pHi) values were indistinguishable, we postulated that Na+/H+ exchange activity (NHE) might be similarly reduced in 786-O VHL cells. NHE-mediated pHi recovery from acid load was less than 50% that in 786-O Neo cells, whereas hypertonicity-stimulated, amiloride-sensitive NHE was indistinguishable in the two cell lines. The NHE3 mRNA level was higher in 786-O VHL than 786-O Neo cells, but NHE1 mRNA levels did not differ. AE2 and NHE3 are the first transcripts reported to be upregulated by pVHL. Elucidation of mechanisms responsible for downregulation of both ion exchange activities will require further investigation.


2007 ◽  
Vol 282 (46) ◽  
pp. 33466-33474 ◽  
Author(s):  
Sarah Chouinard ◽  
Olivier Barbier ◽  
Alain Bélanger

Uridine diphosphate-glucuronosyltransferase 2 (UGT2)B15 and B17 enzymes conjugate dihydrotestosterone (DHT) and its metabolites androstane-3α, 17β-diol (3α-DIOL) and androsterone (ADT). The presence of UGT2B15/B17 in the epithelial cells of the human prostate has been clearly demonstrated, and significant 3α-DIOL glucuronide and ADT-glucuronide concentrations have been detected in this tissue. The human androgen-dependent cancer cell line, LNCaP, expresses UGT2B15 and -B17 and is also capable of conjugating androgens. To assess the impact of these two genes in the inactivation of androgens in LNCaP cells, their expression was inhibited using RNA interference. The efficient inhibitory effects of a UGT2B15/B17 small interfering RNA (siRNA) probe was established by the 70% reduction of these UGT mRNA levels, which was further confirmed at the protein levels. The glucuronidation of dihydrotestosterone (DHT), 3α-DIOL, and ADT by LNCaP cell homogenates was reduced by more than 75% in UGT2B15/B17 siRNA-transfected LNCaP cells when compared with cells transfected with a non-target probe. In UGT2B15/B17-deficient LNCaP cells, we observe a stronger response to DHT than in control cells, as determined by cell proliferation and expression of eight known androgen-sensitive genes. As expected, the amounts of DHT in cell culture media from control cells were significantly lower than that from UGT2B15/B17 siRNA-treated cells, which was caused by a higher conversion to its corresponding glucuronide derivative. Taken together these data support the idea that UGT2B15 and -B17 are critical enzymes for the local inactivation of androgens and that glucuronidation is a major determinant of androgen action in prostate cells.


2020 ◽  
Vol 98 (5) ◽  
pp. 575-582
Author(s):  
Heng Yang ◽  
Jia Ren ◽  
Yu Bai ◽  
Jielin Jiang ◽  
Shiyao Xiao

MicroRNA (miR)-518-3p has been shown to function as a tumor suppressor. This study was conducted to investigate the effects of miR-518-3p in colorectal cancer (CRC). The miR-518-3p mimic, mimic negative control (NC), miR-518-3p inhibitor, inhibitor-NC, ShRNA-TRIP4, and ShRNA-NC vectors were transfected into SW480 cells using Lipofectamine 2000. Cell viability was detected using CCK-8. Colony formation, cell invasiveness, and cell migration were assessed by plate colony formation, Transwell assays, and wound healing assays, respectively. Relative mRNA and protein levels were detected using RT–qPCR and Western blot, respectively. The target gene thyroid hormone receptor interactor 4 (TRIP4) of miR-518-3p was identified and further verified using dual-luciferase reporter assay. Compared with normal tissues, levels of miR-518-3p were decreased and TRIP4 was significantly increased in the tissues from patients with CRC. Following transfection with a miR-518-3p mimic or ShRNA-TRIP4, cell viability decreased in a time-dependent manner, and colony formation rate, wound closure rate, and the number of invasive cells were much lower for the transfected cells than in the corresponding NC and control groups. miR-518-3p overexpression or silencing of TRIP4 significantly down-regulated the expression of MMP-2 and MMP-9. Knockdown of miR-518-3p had the opposite effects, and TRIP4 was identified as a target of miR-518-3p. The inhibitory effects of miR-518-3p on the progressions of CRC are associated with TRIP4.


Sign in / Sign up

Export Citation Format

Share Document