scholarly journals Pantoprazole (PPZ) Inhibits RANKL-Induced Osteoclast Formation and Function In Vitro and Prevents Lipopolysaccharide- (LPS-) Induced Inflammatory Calvarial Bone Loss In Vivo

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Yu-Xi Li ◽  
Fu-Chao Chen ◽  
Ting Liu ◽  
Zhao-Peng Cai ◽  
Keng Chen ◽  
...  

Bone remodeling is a process delicately balanced between osteoclastic bone resorption and osteoblastic bone formation. Osteoclasts (OCs) are multinucleated giant cells formed through the fusion of monocytic precursors of the hematopoietic stem cells lineage. OCs are the exclusive cells responsible for the resorption and degradation of the mineralized bone matrix. Pantoprazole (PPZ), a proton pump inhibitor (PPI), is commonly prescribed to reduce excess gastric acid production for conditions such as gastroesophageal reflux disease and peptic ulcer disease. Studies have found contradictory effects of PPI therapy on bone metabolism due to the lack of understanding of the exact underlying mechanism. In this study, we found that PPZ inhibits receptor activator of nuclear factor-κB (NF-κB) ligand- (RANKL-) induced osteoclastogenesis from bone marrow monocytic/macrophage (BMMs) precursors and the bone-resorbing activity of mature OCs. Correspondingly, the expression of OC marker genes was also attenuated. At the molecular level, PPZ treatment was associated with reduced activation of the ERK MAPK signaling pathways crucial to OC differentiation. Additionally, the in vivo administration of PPZ protected mice against lipopolysaccharide- (LPS-) induced inflammatory calvarial bone erosion, as a result of the reduced number and activity of OCs on the calvarial bone surface. Although PPI use is associated with increased risk of osteoporosis and bone fractures, our study provides evidence for the direct inhibitory effect of PPZ on OC formation and bone resorption in vitro and in vivo, suggesting a potential therapeutic use of PPZ in the treatment of osteolytic disease with localized bone destruction.

2021 ◽  
Author(s):  
Wenkan Zhang ◽  
guangyao Jiang ◽  
xiaozhong zhou ◽  
leyi huang ◽  
jiahong meng ◽  
...  

Abstract Background: Excessive activation of osteoclasts is an important cause of imbalance in bone remodeling, which further leads to pathological bone destruction. This is a clear feature of many osteolytic diseases, such as rheumatoid arthritis, osteoporosis, and osteolysis around the prosthesis. Based on the fact that many natural compounds have therapeutic potential for treating these diseases by suppressing osteoclast formation and function, we proved that α-mangostin, a natural compound isolated from mango, might be a promising choice. α-mangostin was described had anti‐inflammatory, anticancer and cardioprotective effects. Methods: We evaluated the therapeutic effect of α-mangostin in the process of osteoclast formation and bone resorption. The receptor activator of NF-κB ligand (RANKL) induces the formation of osteoclasts in vitro, and the potential pathways of α-mangostin to inhibit the differentiation and function of osteoclasts were explored. A mouse model of LPS‐induced calvarial osteolysis was establish. Subsequently, micro-CT, histology, etc. were used to evaluate the effect of α-mangostin in preventing inflammatory osteolysis.Results: In our study, we found that α-mangostin could inhibit RANKL-induced osteoclastogenesis and reduced osteoclast‐related gene expression in vitro. Besides, F-actin ring immunofluorescence and resorption pit assay indicated that α-mangostin can also destroy the function of osteoclast. Furthermore, α-mangostin achieved these effects by disrupting the activation of NF-κB/MAPKs signaling pathways. In vivo, our data revealed that α-mangostin could protect mouse calvarial from osteolysis. Conclusions: Together, our study demonstrates that α-mangostin exhibit the ability of inhibiting steoclastogenesis both in vitro and in vivo, and may be a potential option for treating osteoclast‐related diseases.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3184-3184 ◽  
Author(s):  
Asumi Yokota ◽  
Shinya Kimura ◽  
Ruriko Tanaka ◽  
Rina Nagao ◽  
Kazuki Sakai ◽  
...  

Abstract We have previously reported that zoledoronic acid (ZOL) augmented the in vivo effect of imatinib in a murine chronic myeloid leukemia (CML) model (Blood 2003). ZOL alone induces apoptosis in leukemic cells in vitro by inhibiting prenylation of the Ras-related proteins. In addition to this direct anti-leukemic effect, we hypothesized that ZOL also has some influence in leukemic cells in vivo indirectly by destroying osteoclasts (OCs), which is the primary therapeutic activity of ZOL in osteoporosis patients. Supporting this notion is that by mediating bone resorption, OCs release a variety of cytokines such as IGF- 1, TGF-β, etc. that have accumulated in the bone matrix. It has been reported that OCs play an important role in bone metastasis of solid tumor, especially in cancer stem cells. However, little is known about the role of OCs in leukemia. Therefore, we investigated it in vitro and in vivo. For this purpose, we established an in vitro osteoblasts (OBs) and OCs co-culture system. The stable co-culture system that we developed includes collagen gel and murine primary OBs and OCs. In addition, murine femoral bone sections were sometimes added to this culture system so that the OCs could release the cytokines from the bone matrix. Thus, the collagen gel and OBs were placed in 12-well plates with and without bone sections and/or OCs. The transwell chambers over the wells then received 1×104 Ba/F3 cells that had been transfected with wild type bcr-abl (Ba/F3/bcr-abl cells). OBs markedly enhanced the growth of Ba/F3/bcr-abl cells in this indirect contact coculture system whereas the presence of both OBs and OCs slightly suppressed cell growth. Intriguingly, when bone sections were added (OBs+OCs+bone), Ba/F3/bcr-abl cell proliferation was significantly suppressed compared to the effect of OBs alone or OBs+OCs (Figure). Cell cycle analysis revealed that the G0/G1 population was increased in Ba/F3/bcr-abl cells co-cultured with OBs+OCs+bones. We also observed that the p27 protein levels of Ba/F3/bcr-abl cells increased upon co-culture with OCs or OCs+bones, similar to their response to treatment with purified TGF-β. We performed ELISAs to determine the concentrations of cytokines in the supernatants of co-cultured OBs and OCs. There were higher levels of TGF-β1 in the OBs+OCs+bones supernatant than in the OBs+OCs supernatant. Furthermore, OBs produced high levels of IGF-1. These findings suggest that OBs and OCs affect the proliferation and the cell cycle arrest of leukemic cells by releasing soluble factors, respectively. To more comprehensively elucidate the roles OCs play in leukemia cells in vivo, we used reveromycin A (RM-A) which inhibits bone resorption by specifically inducing apoptosis in OCs (Woo et al, PNAS 2006). RM-A did not have any in vitro effects on the proliferation of Ba/F3/bcr-abl cells. Thus, we could know the unalloyed role of OCs in leukemia with RM-A compared with ZOL which inhibited directly both OCs and leukemic cells. Our preliminary data show that RM-A suppresses the engraftment of inoculated Ba/F3/bcr-abl cells to nude mice. We also present data from ongoing studies showing the effect of RM-A on leukemic cells in murine models. These findings suggested that OCs may be an important constituent of leukemia stem cell niche and destruction of OCs by either ZOL or RM-A is a novel strategy for leukemia treatment. Figure Figure


2021 ◽  
Vol 12 ◽  
Author(s):  
Juan Duan ◽  
Xuantao Hu ◽  
Tao Li ◽  
Gen Wu ◽  
Pengcheng Dou ◽  
...  

Background: Aseptic loosening of prosthesis (ALP) is one of the most common long-term complications of knee and hip arthroplasty. Wear particle-induced osteoclastogenesis and subsequent periprosthetic osteolysis account for the morbidity of ALP. Here, we investigate the potential of cimifugin (CIM), a natural extract from Cimicifuga racemosa and Saposhnikovia divaricata, as a bone-protective drug in the treatment of ALP.Method: First, we performed cell viability and osteoclast formation assays to assess the effect of noncytotoxic CIM on osteoclast differentiation in vitro. Bone slice resorption and F-actin ring immunofluorescence assays were adopted to assess the effects of CIM on bone-resorption function. Then, quantitative real-time polymerase chain reaction (qRT–PCR) analysis was performed to further assess the repressive effects of CIM on osteoclastogenesis at the gene expression level. To elucidate the mechanisms underlying the above findings, Western blot and luciferase reporter gene assays were used to assess the regulatory effects of CIM on the NF-κB and MAPK signaling pathways. Moreover, a Ti particle-induced murine calvarial osteolysis model and subsequent histomorphometric analysis via micro-CT and immunohistochemical staining were used to elucidate the effect of CIM on periprosthetic osteolysis in vivo.Result: CIM dose-dependently inhibited both bone marrow-derived macrophage (BMM)- and RAW264.7 cell-derived osteoclastogenesis and bone resorption pit formation in vitro, which was further supported by the reduced expression of F-actin and osteoclast-specific genes. According to the Western blot analysis, inhibition of IκBα phosphorylation in the NF-κB signaling pathway, not the phosphorylation of MAPKs, was responsible for the suppressive effect of CIM on osteoclastogenesis. Animal experiments demonstrated that CIM alleviated Ti particle-induced bone erosion and osteoclast accumulation in murine calvaria.Conclusion: The current study suggested for the first time that CIM can inhibit RANKL-induced osetoclastogenesis by suppressing the NF-κB signaling pathway in vitro and prevent periprosthetic osteolysis in vivo. These findings suggest the potential of CIM as a therapeutic in ALP.


Blood ◽  
2019 ◽  
Vol 133 (19) ◽  
pp. 2069-2078 ◽  
Author(s):  
Wendy W. Pang ◽  
Agnieszka Czechowicz ◽  
Aaron C. Logan ◽  
Rashmi Bhardwaj ◽  
Jessica Poyser ◽  
...  

Abstract The myelodysplastic syndromes (MDS) represent a group of clonal disorders that result in ineffective hematopoiesis and are associated with an increased risk of transformation into acute leukemia. MDS arises from hematopoietic stem cells (HSCs); therefore, successful elimination of MDS HSCs is an important part of any curative therapy. However, current treatment options, including allogeneic hematopoietic cell transplantation (HCT), often fail to ablate disease-initiating MDS HSCs, and thus have low curative potential and high relapse rates. Here, we demonstrate that human HSCs can be targeted and eliminated by monoclonal antibodies (mAbs) that bind cell-surface CD117 (c-Kit). We show that an anti-human CD117 mAb, SR-1, inhibits normal cord blood and bone marrow HSCs in vitro. Furthermore, SR-1 and clinical-grade humanized anti-human CD117 mAb, AMG 191, deplete normal and MDS HSCs in vivo in xenograft mouse models. Anti-CD117 mAbs also facilitate the engraftment of normal donor human HSCs in MDS xenograft mouse models, restoring normal human hematopoiesis and eradicating aggressive pathologic MDS cells. This study is the first to demonstrate that anti-human CD117 mAbs have potential as novel therapeutics to eradicate MDS HSCs and augment the curative effect of allogeneic HCT for this disease. Moreover, we establish the foundation for use of these antibody agents not only in the treatment of MDS but also for the multitude of other HSC-driven blood and immune disorders for which transplant can be disease-altering.


Bone ◽  
2015 ◽  
Vol 79 ◽  
pp. 242-251 ◽  
Author(s):  
Ju-Young Kim ◽  
Jung-Youl Min ◽  
Jong Min Baek ◽  
Sung-Jun Ahn ◽  
Hong Young Jun ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2101-2101
Author(s):  
Michael D. Milsom ◽  
Laura Hollins ◽  
Dorothy Gagen ◽  
Lorna B. Woolford ◽  
Leslie J. Fairbairn

Abstract We have recently demonstrated that co-expression of HOXB4 enables the enhanced delivery of HSC harbouring a second therapeutic trans-gene. Nonetheless, it is of great importance to elaborate the current knowledge about the mechanism of HOXB4 action in order to both evaluate the safety implications of its use in a clinical strategy, and to gain greater insight into the regulation of HSC self-renewal/expansion. To these ends we have performed an extensive in vitro analysis of the consequences of HOXB4 overexpression in primary murine BMC and in a murine multipotent myeloid progenitor cell line (FDCP-mix). We demonstrate for the first time in murine cells, that ectopic HOXB4 reduces the responsiveness of murine hematopoietic cells to differentiation stimuli. Furthermore, by performing a detailed investigation into the kinetics of FDCP-mix differentiation, we reveal that HOXB4 overexpression results in a specific differentiation delay as opposed to an outright block. We propose that an analogous delay is in operation in repopulating cells in order that the shift to increased assymetrical self-renewal, a requirement for stem cell expansion, is achieved. Notwithstanding this, it is clear that any perturbation in differentiation constitutes an increased risk of cellular transformation if this technology were transferred to a clinical setting. In order to further define the repercussions of ectopic HOXB4 delivery, we have developed a retroviral vector which encodes an activatable version of HOXB4. We have shown that this vector is able to mediate an in vitro differentiation delay in primary murine BMC and FDCP-mix as well as enable enhanced engraftment of BMC in vivo, both dependent upon the addition of the estrogen analogue; tamoxifen. Using this system, we are currently examining the effect of ectopic HOXB4 on the transcriptome of FDCP-mix cells, in addition to performing an in depth study into the biological mechanisms affected by HOXB4 overexpression in BMC in vivo. We envisage that these model systems will be particularly amenable to the manipulation required for target gene identification/validation.


2020 ◽  
Vol 21 (3) ◽  
pp. 1130 ◽  
Author(s):  
Fumitoshi Ohori ◽  
Hideki Kitaura ◽  
Saika Ogawa ◽  
Wei-Ren Shen ◽  
Jiawei Qi ◽  
...  

Interleukin (IL)-33 is a member of the IL-1 family, which acts as an alarmin. Several studies suggested that IL-33 inhibited osteoclastogenesis and bone resorption. Tumor necrosis factor-α (TNF-α) is considered a direct inducer of osteoclastogenesis. However, there has been no report regarding the effect of IL-33 on TNF-α-induced osteoclastogenesis and bone resorption. The objective of this study is to investigate the role of IL-33 on TNF-α-induced osteoclastogenesis and bone resorption. In an in vitro analysis of osteoclastogenesis, osteoclast precursors, which were derived from bone marrow cells, were treated with or without IL-33 in the presence of TNF-α. Tartrate-resistant acid phosphatase (TRAP) staining solution was used to assess osteoclast formation. In an in vivo analysis of mouse calvariae, TNF-α with or without IL-33 was subcutaneously administrated into the supracalvarial region of mice daily for 5 days. Histological sections were stained for TRAP, and osteoclast numbers were determined. Using micro-CT reconstruction images, the ratio of bone destruction area on the calvariae was evaluated. The number of TRAP-positive cells induced by TNF-α was significantly decreased with IL-33 in vitro and in vivo. Bone resorption was also reduced. IL-33 inhibited IκB phosphorylation and NF-κB nuclear translocation. These results suggest that IL-33 inhibited TNF-α-induced osteoclastogenesis and bone resorption.


2020 ◽  
Author(s):  
Melissa Castiglione ◽  
Haotian Zhang ◽  
Huichun Zhan

AbstractThe myeloproliferative neoplasms (MPNs) are clonal stem cell disorders characterized by overproduction of mature blood cells and increased risk of transformation to frank leukemia. The acquired kinase mutation JAK2V617F plays a central role in a majority of these disorders. The hematopoietic stem cell (HSC) compartment in MPN is heterogeneous with the presence of both JAK2 wild-type and JAK2V617F mutant cells in most patients with MPN. Utilizing in vitro co-culture assays and in vivo competitive transplantation assays, we found that the presence of wild-type cells altered the behavior of co-existing JAK2V617F mutant cells, and a mutant microenvironment (niche) could overcome the competition between wild-type and mutant cells, leading to mutant clonal expansion and overt MPN. We also demonstrated that competition between wild-type and JAK2V617F mutant cells triggered a significant immune response, and there was a dynamic PD-L1 deregulation in the mutant stem/progenitor cells caused by their interactions with the neighboring wild-type cells and the microenvironment. Therefore, while accumulation of oncogenic mutations is unavoidable during aging, our data suggest that, if we could therapeutically enhance normal cells’ ability to compete, we might be better able to control neoplastic cell expansion and prevent the development of a full-blown malignancy.Key PointsThe presence of wild-type cells alters the behavior of co-existing JAK2V617F mutant cellsA mutant microenvironment overcomes the competition between wild-type and JAK2V617F mutant cells, leading to the development of a MPN


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 447-447
Author(s):  
Alejandro Roisman ◽  
Emmalee R. Adelman ◽  
Hsuan-Ting Huang ◽  
Dean Wade ◽  
Daniel Bilbao ◽  
...  

With aging there is a gradual decline in normal HSC function, which is accompanied by an increased risk for the development of hematological malignancies. While a lot of work has been done in mice to understand this functional decline, less is known about human HSC biology with aging. We recently reported that KLF6, a Krüpper-like transcription factor, is one of the top genes downregulated with aging in human Lin-CD34+CD38- cells, and that this downregulation correlates with loss of H3K27ac at several KLF6 upstream putative enhancer regions. Therefore, we hypothesized that age-acquired epigenetic deregulation at the KLF6 locus resulting in loss of expression may be implicated in age-related HSC dysfunction and increased risk of malignant transformation. In order to test this, we isolated CD34+ hematopoietic stem and progenitor cells (HSPCs) from healthy individuals and performed CRISPR-Cas9-based genome editing and transcriptional activation of the KLF6 locus. KLF6-deficient cells were evaluated in terms of their function by colony-forming potential, in vitro differentiation, and hematopoietic reconstitution in immunocompromised mice. Myeloid and erythroid in vitro differentiation assays in liquid culture revealed that KLF6 knock-out (KO) in healthy, young HSPC results in persistent CD34+ expression (n=5, p<0.01) and strong reduction of the CD11b, CD15 and CD33 myeloid markers (n=5, p<0.05 for all markers), and the CD71 and CD235a erythroid markers (n=5, p<0.05 for both markers), indicating that loss of KLF6 leads to a block in the differentiation programs of HSPCs. Moreover, KLF6 KO cells plated on methylcellulose exhibited an increase in the total number of colonies (n=5, p=0.02) with a strong increase in the formation of granulocyte-monocyte colonies (n=5, p=0.014) as well as an increase in erythroid burst-forming units (n=5, p=0.034), indicating increased progenitor potential in these cells. Importantly, CRISPR targeting of the nearest putative enhancer to the KLF6 locus (-25kb), which resulted in >75% downregulation of the KLF6 transcript, recapitulated the differentiation block and colony-forming phenotypes. Next, in order to define if KLF6 genomic inactivation results in an expression profile similar to that observed in healthy aged donors, we performed RNA-seq analysis. This confirmed that in young CD34+ cells both targeting KLF6 and its putative enhancer, results in gene expression signature enriched not only for our previously reported human aging HSC signature (GSEA NES=1.25 & FDR<0.01 for genes up with aging and NES=-1.17 and FDR<0.1 for genes down with aging), but also for several leukemia-associated gene signatures. Next, we sought to determine if re-expression of KLF6 in aged CD34+ cells could reverse the aging phenotype. KLF6 induction in these cells using a dCas9-VP64 fusion system led to a decrease in their myeloid differentiation potential, compared to unmanipulated and non-targeting control (NTC). This decrease in the in vitro myeloid output brought aged CD34+ cells to a behavior closer to their younger counterpart controls. Finally, to determine the impact that KLF6 inactivation may have in the hematopoietic system in vivo, we engrafted KLF6 knock-out (KO) (n=7) and NTC (n=7) cells into immunodeficient NSGS recipients. Analysis of KLF6 KO recipients revealed an increased myeloid output in peripheral blood compared to NTC (weeks 8 to 14), which was accompanied by a decrease in lymphoid output. Moreover, analysis of the bone marrow composition at week 14 showed increased frequency of CD34+CD38-CD45RA-CD90+CD49f+ HSC and CD34+CD38+ progenitor components (p=0.02, and p=0.04, respectively). In summary, our findings demonstrate that KLF6 is essential for normal in vitro and in vivo hematopoietic function, and that loss of this transcription factor recapitulates both the expression profile of aged HSC as well as several of the functional characteristics of aged hematopoiesis. These observations were further validated by the reactivation of KLF6 in aged HSPCs, which resulted in an attenuation of the aging HSPC phenotype in vitro. Finally, changes in gene expression in KLF6 KO cells indicate that it may be essential for regulation of gene expression programs involved in malignant transformation, such that age-related loss of this transcription factor may contribute to predisposition to myeloid malignancies. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 566-566
Author(s):  
Jin He ◽  
Zhiqiang Liu ◽  
Yuhuan Zheng ◽  
Jianfei Qian ◽  
Haiyan Li ◽  
...  

Abstract Abstract 566 Bone destruction is a hallmark of multiple myeloma (MM). More than 80% of MM patients have osteolysis, which is characterized by pathological fractures, severe bone pain, spinal cord compression, and hypercalcemia. These symptoms can severely compromise a patient's quality of life and performance status. It has been proposed that MM cells activate osteoclast (OC)-mediated bone resorption and inhibit osteoblast (OB)-mediated bone formation. However, the mechanism underlying the association of MM cells with development of bone lesions remains poorly elucidated. Our previous studies showed that p38 mitogen-activated protein kinase (MAPK), which is constitutively activated in MM cells, is a master regulator of MM-mediated bone destruction. Knocking down or inhibiting p38 MAPK activity in MM cells prevented MM-induced bone destruction in vivo. In the present study, we further investigated the mechanism of MM cell p38 MAPK-induced bone destruction. We hypothesized that p38 MAPK activity in MM cells can regulate OB and OC differentiation and activity by upregulating cytokine production by MM cells. In a cytokine array analysis, we examined the expression and secretion of MM-derived cytokines that regulate OB and OC differentiation. Our results showed for the first time that either knockdown or inhibition of p38 MAPK activity by p38 MAPK short hairpin RNAs or inhibitors significantly downregulated the production of dickkopf-1 (DKK-1) and monocyte chemotactic protein-1 (MCP-1) by MM cells. Real-time PCR and ELISA quantified and confirmed the array analysis results. To determine the role of p38 MAPK-upregulated DKK-1 and MCP-1 production in bone destruction, we administered treatment with neutralizing antibodies to SCID mice injected intravenously with ARP-1 or MM.1S cells. Our results showed that neutralization of DKK-1 and MCP-1 led to fewer bone lesions in these mice. Furthermore, we examined the impact of MM cell p38 MAPK activity on OB and/or OC differentiation. Our results showed that knockdown or inhibition of MM cell p38 MAPK significantly downregulated osteoclastogenesis but upregulated osteoblastogenesis in vitro and in vivo. Although DKK-1 is well known to inhibit OB differentiation, we found that DKK-1, together with MCP-1, promoted OC differentiation and bone resorption. Mechanistic studies further showed that MCP-1 upregulated RANK expression in OC precursors and that DKK-1 increased RANKL secretion from stromal cells and mature OBs, all of which led to activation of the NF-kB and MAPK signaling pathways in OCs. Thus, our study uncovered a novel mechanism by which p38 MAPK signaling in MM cells regulates osteoblastogenesis, osteoclastogenesis, and bone destruction in patients with this disease. These findings strongly suggest that disrupting and targeting MM cell p38 signaling are effective approaches to treating osteolytic bone lesions in MM patients. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document