scholarly journals Lack of PPARβ/δ-Inactivated SGK-1 Is Implicated in Liver Carcinogenesis

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Bo Shen ◽  
Aimin Li ◽  
Yu-Jui Yvonne Wan ◽  
Guijia Shen ◽  
Jinshui Zhu ◽  
...  

Objective. The present study examined the role of PPARβ/δ in hepatocellular carcinoma (HCC). Methods. The effect of PPARβ/δ on HCC development was analyzed using PPARβ/δ-overexpressed liver cancer cells and PPARβ/δ-knockout mouse models. Results. PPARβ/δ(-/-) mice were susceptible to diethylnitrosamine- (DEN-) induced HCC (87.5% vs. 37.5%, p<0.05). In addition, PPARβ/δ-overexpressed HepG2 cells had reduced proliferation, migration, and invasion capabilities accompanied by increased apoptosis and cell cycle arrest at the G0/G1 phase. Moreover, differential gene expression profiling uncovered that the levels of serine/threonine-protein kinase (SGK-1) mRNA and its encoded protein were reduced in PPARβ/δ-overexpressed HepG2 cells. Consistently, elevated SGK-1 levels were found in PPARβ/δ(-/-) mouse livers as well as PPARβ/δ-knockdown human SMMC-7721 HCC cells. Chromatin immunoprecipitation (ChIP) assays followed by real-time quantitative polymerase chain reaction (qPCR) assays further revealed the binding of PPARβ/δ to the SGK-1 regulatory region in HepG2 cells. Conclusions. Due to the known tumor-promoting effect of SGK1, the present data suggest that PPARβ/δ-deactivated SGK1 is a novel pathway for inhibiting liver carcinogenesis.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jianming Sun ◽  
Linggang Deng ◽  
Ye Gong

Prostate cancer (PCa) is a common malignant tumor of the male genitourinary system that seriously affects the quality of life of patients. Studying the pathogenesis and therapeutic targets of PCa is important. In this study, we investigated the role of miR-145-5p in PCa and its potential molecular mechanisms. The expression levels of miR-145-5p in PCa tissues and adjacent control tissues were detected by real-time quantitative polymerase chain reaction. The effects of miR-145-5p overexpression on PCa were studied using cell proliferation, migration, and invasion experiments. Furthermore, WIP1 was the target gene of miR-145-5p through the bioinformatics website and dual-luciferase reporter gene experiment. Further studies found that WIP1 downregulation could inhibit the proliferation, invasion, and cloning of PCa cells. Overexpression of WIP1 reversed the anticancer effects of miR-145. The anticancer effect of miR-145 was achieved by inhibiting the PI3K/AKT signaling pathway and upregulating ChK2 and p-p38MAPK. Taken together, these results confirmed that miR-145-5p inhibited the growth and metastasis of PCa cells by inhibiting the expression of proto-oncogene WIP1, thereby playing a role in tumor suppression in PCa and may become a potential therapeutic target for the treatment of PCa.


Author(s):  
Qianqian Yu ◽  
Wenhai Sun ◽  
Hui Hua ◽  
Yulian Chi ◽  
Xiaomin Liu ◽  
...  

Background: The incidence of thyroid cancer is increasing rapidly and there is an urgent need to explore novel therapeutic targets for thyroid cancer. MiR-140 has been reported to affect the progression of various cancers, which makes it possible to play a role in thyroid cancer. This study aimed to investigate the expression and role of miR-140 in thyroid cancer. Methods: The expression of miR-140 was investigated by reverse transcription-quantitative polymerase chain reaction (qRT-PCR) in thyroid cancer tissues and cell lines. The prognostic value of miR-140 in thyroid cancer was evaluated by Kaplan-Meier survival and Cox regression. Moreover, effects of miR-140 on cell proliferation, migration, and invasion of thyroid cancer were investigated by CCK-8 and Transwell assay. Results: MiR-140 was downregulated in thyroid cancer tissues and cells, which correlated with TNM stage and lymph node metastasis of patients. Patients with low miR-140 expression had a shorter survival time compared with that in patients with high miR-140 expression. Furthermore, miR-140 acts as an independent factor for the prognosis of thyroid cancer. Overexpression of miR-140 inhibited cell proliferation, migration, and invasion of thyroid cancer. Conclusion: MiR-140 can serve as a potential prognostic factor for patients with thyroid cancer and suppress the progression of thyroid cancer, which provides new insight for the therapeutic target for thyroid cancer.


Author(s):  
Sara Keränen ◽  
Santeri Suutarinen ◽  
Rahul Mallick ◽  
Johanna P. Laakkonen ◽  
Diana Guo ◽  
...  

Abstract Background Brain arteriovenous malformations (bAVM) may rupture causing disability or death. BAVM vessels are characterized by abnormally high flow that in general triggers expansive vessel remodeling mediated by cyclo-oxygenase-2 (COX2), the target of non-steroidal anti-inflammatory drugs. We investigated whether COX2 is expressed in bAVMs and whether it associates with inflammation and haemorrhage in these lesions. Methods Tissue was obtained from surgery of 139 bAVMs and 21 normal Circle of Willis samples. The samples were studied with immunohistochemistry and real-time quantitative polymerase chain reaction (RT-PCR). Clinical data was collected from patient records. Results COX2 expression was found in 78% (109/139) of the bAVMs and localized to the vessels’ lumen or medial layer in 70% (95/135) of the bAVMs. Receptors for prostaglandin E2, a COX2-derived mediator of vascular remodeling, were found in the endothelial and smooth muscle cells and perivascular inflammatory cells of bAVMs. COX2 was expressed by infiltrating inflammatory cells and correlated with the extent of inflammation (r = .231, p = .007, Spearman rank correlation). COX2 expression did not associate with haemorrhage. Conclusion COX2 is induced in bAVMs, and possibly participates in the regulation of vessel wall remodelling and ongoing inflammation. Role of COX2 signalling in the pathobiology and clinical course of bAVMs merits further studies.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 156
Author(s):  
Mohammad Al Hasan ◽  
Patricia E. Martin ◽  
Xinhua Shu ◽  
Steven Patterson ◽  
Chris Bartholomew

GPR56 is required for the adipogenesis of preadipocytes, and the role of one of its ligands, type III collagen (ColIII), was investigated here. ColIII expression was examined by reverse transcription quantitative polymerase chain reaction, immunoblotting and immunostaining, and its function investigated by knockdown and genome editing in 3T3-L1 cells. Adipogenesis was assessed by oil red O staining of neutral cell lipids and production of established marker and regulator proteins. siRNA-mediated knockdown significantly reduced Col3a1 transcripts, ColIII protein and lipid accumulation in 3T3-L1 differentiating cells. Col3a1−/− 3T3-L1 genome-edited cell lines abolished adipogenesis, demonstrated by a dramatic reduction in adipogenic moderators: Pparγ2 (88%) and C/ebpα (96%) as well as markers aP2 (93%) and oil red O staining (80%). Col3a1−/− 3T3-L1 cells displayed reduced cell adhesion, sustained active β-catenin and deregulation of fibronectin (Fn) and collagen (Col4a1, Col6a1) extracellular matrix gene transcripts. Col3a1−/− 3T3-L1 cells also had dramatically reduced actin stress fibres. We conclude that ColIII is required for 3T3-L1 preadipocyte adipogenesis as well as the formation of actin stress fibres. The phenotype of Col3a1−/− 3T3-L1 cells is very similar to that of Gpr56−/− 3T3-L1 cells, suggesting a functional relationship between ColIII and Gpr56 in preadipocytes.


2021 ◽  
Vol 11 (8) ◽  
pp. 3696
Author(s):  
Sohyeon Park ◽  
Yoonjin Park ◽  
Heejong Shin ◽  
Boyong Kim ◽  
Seunggwan Lee

Although Allium species are involved in bioactivity, to the best of our knowledge, there is no research on the effects of Allium senescens on drug resistance in hepatocarcinoma. Ultra-high performance liquid chromatography was used to determine the concentration of several bioactive compounds in A. senescens extract; flow cytometry, reverse transcription–quantitative polymerase chain reaction, and siRNA-mediated knockdown to estimate the levels of different markers in HepG2 cells. The quantity of p-coumaric acid in the extract was 4.7291 ± 0.06 μg/mL, and the protein of relevant evolutionary and lymphoid interest (PRELI) in the resistant cells decreased 2.1 times in the presence of p-coumaric acid. The resistant cells strongly downregulated the efflux transporters (ABCB1, ABCC2, and ABCG2) when exposed to the extract or p-coumaric acid and when PRELI was knocked down, in contrast to the influx proteins (OCT-1). Additionally, the extract induced mitochondrial apoptosis and suppressed autophagy. Consequently, the extract and p-coumaric acid attenuated drug resistance of HepG2 cells through the downregulation of PRELI, a key protein associated with the modulation of drug transporter expression, the activation of autophagy, and mitochondrial apoptosis. Our results indicate that A. senescens extract is beneficial in protecting cancer cells against drug resistance and sustaining the efficacy of sorafenib against liver cancer.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Raquel Weber ◽  
Ana Paula Santin Bertoni ◽  
Laura Walter Bessestil ◽  
Ilma Simoni Brum ◽  
Tania Weber Furlanetto

Goiter is more common in women, suggesting that estrogen could be involved in its physiopathology. The presence of classical estrogen receptors (ERαand ERβ) has been described in thyroid tissue, suggesting a direct effect of estrogen on the gland. A nonclassic estrogen receptor, the G-protein-coupled estrogen receptor (GPER1), has been described recently in several tissues. However, in goiter, the presence of this receptor has not been studied yet. We investigated GPER1 gene and protein expressions in normal thyroid and goiter using reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blot, respectively. In normal thyroid (n=16) and goiter (n=19), GPER1 gene was expressed in all samples, while GPER1 protein was expressed in all samples of normal thyroid (n=15) but in only 72% of goiter samples (n=13). When comparing GPER1 gene and protein levels in both conditions, gene expression and protein levels were higher in normal thyroid than in goiter, suggesting a role of this receptor in this condition. Further studies are needed to elucidate the role of GPER1 in normal thyroid and goiter.


Blood ◽  
2006 ◽  
Vol 108 (4) ◽  
pp. 1223-1229 ◽  
Author(s):  
Dehua Wang ◽  
Jenice D'Costa ◽  
Curt I. Civin ◽  
Alan D. Friedman

Abstract C/EBPα is required for generation of granulocyte-monocyte progenitors, but the subsequent role of C/EBPα in myeloid lineage commitment remains uncertain. We transduced murine marrow cells with C/EBPα-estradiol receptor (ER) or empty vector and subjected these to lineage depletion just prior to culture in estradiol with myeloid cytokines. This protocol limits biases due to lineage-specific effects on developmental kinetics, proliferation, and apoptosis. Also, lowering the dose of estradiol reduced activated C/EBPα-ER to near the physiologic range. C/EBPα-ER increased Mac1+/Gr1–/MPO–/low monocytes 1.9-fold while reducing Mac1+/Gr1+/MPOhi granulocytes 2.5-fold at 48 hours, even in 0.01 μM estradiol. This pattern was confirmed morphologically and by quantitative polymerase chain reaction (PCR) assay of lineage markers. To directly assess effects on immature progenitors, transduced cells were cultured for 1 day with and then in methylcellulose without estradiol. A 2-fold increase in monocytic compared with granulocytic colonies was observed in IL-3/IL-6/SCF or GM-CSF, but not G-CSF, even in 0.01 μM estradiol. C/EBPα-ER induced PU.1 mRNA, and PU.1-ER stimulated monocytic development, suggesting that transcriptional induction of PU.1 by C/EBPα contributes to monopoiesis. A C/EBPα variant incapable of zippering with c-Jun did not induce monopoiesis, and a variant unable to bind NF-κB p50 stimulated granulopoiesis, suggesting their cooperation with C/EBPα during monocytic commitment.


2007 ◽  
Vol 137 (1) ◽  
pp. 34-38 ◽  
Author(s):  
Bradford A. Woodworth ◽  
Rachel Wood ◽  
John E. Baatz ◽  
Rodney J. Schlosser

OBJECTIVE: To measure alterations in SPA1, A2, and D gene expression in various forms of inflammatory chronic rhinosinusitis (CRS). STUDY DESIGN AND SETTING: Sinus mucosal biopsies were performed in patients with allergic fungal rhinosinusitis (AFS), CRS with nasal polyposis, cystic fibrosis (CF), and controls. SP mRNA was measured with quantitative polymerase chain reaction. RESULTS: Patients with CF (n = 4) showed significantly increased SPA1 (82-fold), SPA2 (100-fold), and SPD (47-fold) mRNA ( P < 0.05) when compared with controls (n = 5). Patients with CRS with nasal polyposis (n = 5) also demonstrated elevated SPA1 (27-fold), SPA2 (13-fold), and SPD (13-fold). Patients with AFS (n = 7) had increased SPA1 (5-fold), SPA2 (9-fold), and SPD (17-fold), but were not statistically significant. CONCLUSION: SPA1, A2, and D are upregulated in various forms of CRS, but are significantly elevated in cystic fibrosis CRS. SIGNIFICANCE: Understanding the role of SPs in CRS will help develop novel treatment approaches for sinonasal pathoses.


2020 ◽  
Vol 19 (7) ◽  
pp. 1411-1416
Author(s):  
Fuguang Zhao ◽  
Bo Ma ◽  
Zhenye Lv ◽  
Jie Chen ◽  
Yuanjie Cai ◽  
...  

Purpose: To investigate the potential mechanism by which zerumbone suppresses breast cancer (BC) cells.Methods: Cell viability and Transwell assays were performed to assess the effect of zerumbone on BC cell growth. The downstream target of zerumbone was determined using quantitative polymerase chain reaction assays and immunoblotting. Cell viability assays and immunoblotting were conducted to detect if zerumbone had any effect on BACH1 (BTB domain and CNC homolog 1) expression.Results: Zerumbone suppressed the proliferation, migration, and invasion of BC cells. It also upregulated the expression of microRNA (miR)-708 and, hence, suppressed BACH1 expression. Furthermore, zerumbone suppressed the proliferation and invasion of BC cells by promoting miR-708expression and suppressing BACH1.Conclusion: The findings help clarify the anti-tumor mechanism of zerumbone and provide theoretical and therapeutic bases for the anti-tumor effects of Chinese herbal medicine. Keywords: Breast cancer, Zerumbone, Cell invasion, MiR-708, BACH1


Author(s):  
Xiaoyu Zhao ◽  
Hin Chu ◽  
Bosco Ho-Yin Wong ◽  
Man Chun Chiu ◽  
Dong Wang ◽  
...  

Abstract Background Human infection with Middle East respiratory syndrome coronavirus (MERS-CoV) poses an ongoing threat to public health worldwide. The studies of MERS patients with severe disease and experimentally infected animals showed that robust viral replication and intensive proinflammatory response in lung tissues contribute to high pathogenicity of MERS-CoV. We sought to identify pattern recognition receptor (PRR) signaling pathway(s) that mediates the inflammatory cascade in human macrophages upon MERS-CoV infection. Methods The potential signaling pathways were manipulated individually by pharmacological inhibition, small interfering ribonucleic acid (siRNA) depletion, and antibody blocking. The MERS-CoV-induced proinflammatory response was evaluated by measuring the expression levels of key cytokines and/or chemokines. Reverse transcription-quantitative polymerase chain reaction assay, flow cytometry analysis, and Western blotting were applied to evaluate the activation of related PRRs and engagement of adaptors. Results MERS-CoV replication significantly upregulated C-type lectin receptor (CLR) macrophage-inducible Ca2+-dependent lectin receptor (Mincle). The role of Mincle for MERS-CoV-triggered cytokine/chemokine induction was established based on the results of antibody blockage, siRNA depletion of Mincle and its adaptor spleen tyrosine kinase (Syk), and Syk pharmacological inhibition. The cytokine and/or chemokine induction was significantly attenuated by siRNA depletion of retinoic acid-inducible-I-like receptors (RLR) or adaptor, indicating that RLR signaling also contributed to MERS-CoV-induced proinflammatory response. Conclusions The CLR and RLR pathways are activated and contribute to the proinflammatory response in MERS-CoV-infected macrophages.


Sign in / Sign up

Export Citation Format

Share Document