scholarly journals Analysis of Shear Characteristics of Deep, Anchored Rock Mass under Creep Fatigue Loading

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Xiaofeng Li ◽  
Zhixiang Yin

To study the influence of earthquakes and engineering disturbances on the deformation of deeply buried rock masses, shear tests were carried out on anchored sandstone rock masses, anchored marble rock masses, and anchored granite rock masses under creep fatigue loading, and a new creep fatigue model was established to characterize the deformation characteristics of anchored rock masses under creep fatigue loading. The creep fatigue curves of different lithologies clearly show three stages: creep attenuation, steady-state creep, and accelerated creep. Fatigue loading can increase the creep of anchored specimens, and the lower the rock strength is, the higher the creep variable under fatigue loading is. However, for the same rock strength, with the increase in load level, the creep variable produced by creep fatigue load presents a linear downward trend. Considering the changes in the mechanical properties of the anchored rock mass under creep fatigue loading, the creep fatigue model of anchored rock masses is established by introducing a function of the fatigue shear modulus, and the accuracy and applicability of the model are verified by laboratory creep fatigue test data. The model provides a theoretical basis for the study of anchored rock mass support under low-frequency earthquakes or blasting loads.

2021 ◽  
Author(s):  
Xiaofeng Li ◽  
Zhixiang Yin

Abstract To study the influence of earthquakes and engineering disturbances on the deformation of deeply buried rock masses, shear tests were carried out on sandstone, marble and granite anchored specimens under creep fatigue loading, and a new creep fatigue model was established to characterize the deformation characteristics of anchored rock masses under creep fatigue loading. The creep fatigue curves of different lithologies clearly show three stages: creep attenuation, steady-state creep and accelerated creep. Fatigue loading can increase the creep of anchored specimens, and the lower the rock strength is, the higher the creep variable under fatigue loading. However, for the same rock strength, with the increase in load level, the creep variable produced by creep fatigue load presents a linear downward trend. Considering the changes in the mechanical properties of the anchored rock mass under creep fatigue loading, the creep fatigue model of anchored rock masses is established by introducing a function of the fatigue shear modulus, and the accuracy and applicability of the model are verified by laboratory creep fatigue test data. The model provides a theoretical basis for the study of anchored rock mass support under low-frequency earthquakes or blasting loads.


Materials ◽  
2005 ◽  
Author(s):  
John Shelton ◽  
William J. Craft ◽  
Jaehwan Kim ◽  
Jamil Grant ◽  
Jag Sankar ◽  
...  

Cellulose-based Electro-Active Papers (EAPap) have been studied as potential actuators as a result of their low voltage operation, light weight, and low power consumption. In addition, they are bio-degradable and potentially inexpensive.1 The construction of many EAPap electromechanical actuators has been based on cellulose paper film coated with thin electrode layers. This EAPap actuator has shown a reversible and reproducible bending movement as well as longitudinal displacement under low voltage alternating current. However, the EAPap is a complex anisotropic material, which has not been extensively characterized and additional basic and design testing is required before developing EAPap application and devices. It is important to know the extended fatigue and elastic properties of EAPap materials, and this requires testing and evaluation. It has been known that the cellulose based EAPap has two distinct elastic constants connected by a bifurcation point along the stress strain diagram.2 The initial Young’s modulus of EAPap is in the range of 5-8GPa, - quite high compared to other polymer materials.3 Since these materials are anisotropic, elastic properties also differ as a function of orientation. These materials are sensitive to humidity and temperature. Fatigue tests conducted and described in this paper identify critical properties of this under-analyzed class of materials to provide a measure of its fatigue capabilities. Mechanical strain of EAPap materials has been evaluated, and it appears to follow closely a linear creep model as confirmed by low frequency cyclic (fatigue) loading. The creep parameter has also been determined to be a function of temperature and load level for all the EAPap materials tested.


2016 ◽  
Vol 858 ◽  
pp. 73-80
Author(s):  
Ying Kong ◽  
Hua Peng Shi ◽  
Hong Ming Yu

With the slope unstable rock masses of a stope in Longsi mine, Jiaozuo City, China as the target, we computed and analyzed the stability of unstable rock masses using a limit equilibrium method (LEM) and a discrete element strength reduction method (SRM). Results show that the unstable rock masses are currently stable. Under the external actions of natural weathering, rainfall and earthquake, unstable rock mass 1 was manifested as a shear slip failure mode, and its stability was controlled jointly by bedding-plane and posterior-margin steep inclined joints. In comparison, unstable rock mass 2 was manifested as a tensile-crack toppling failure mode, and its stability was controlled by the perforation of posterior-margin joints. From the results of the 2 methods we find the safety factor determined from SRM is larger, but not significantly, than that from LEM, and SRM can simulate the progressive failure process of unstable rock masses. SRM also provides information about forces and deformation (e.g. stress-strain, and displacement) and more efficiently visualizes the parts at the slope that are susceptible to instability, suggesting SRM can be used as a supplementation of LEM.


2021 ◽  
pp. 136943322199249
Author(s):  
Xing Li ◽  
Jiwen Zhang ◽  
Jun Cheng

This paper presents fatigue behaviors and the stiffness degradation law of concrete continuous beams with external prestressed carbon fiber-reinforced polymer (CFRP) tendons. Three specimens were tested under fatigue loading, and the influence of different load levels on the stiffness degradation and fatigue life were studied, and it was found that the stiffness degradation of three test specimens exhibited a three-stage change rule, namely rapid decrease, stable degradation, and sharp decline, but there are obvious differences in the rate and amplitude of stiffness degradation. The load level has a significant influence on the fatigue life of the test specimens. An analytical model with load level considered was proposed to calculate the residual stiffness and predict the stiffness degradation, which is in good agreement with the test results. The model of stiffness degradation presents a possible solution for practical engineering applications of concrete continuous beams with externally prestressed CFRP tendons subjected to different fatigue loadings.


2007 ◽  
Vol 353-358 ◽  
pp. 485-490 ◽  
Author(s):  
Y.M. Baik ◽  
K.S. Kim

Crack growth in compact specimens of type 304 stainless steel is studied at 538oC. Loading conditions include pure fatigue loading, static loading and fatigue loading with hold time. Crack growth rates are correlated with the stress intensity factor. A finite element analysis is performed to understand the crack tip field under creep-fatigue loading. It is found that fatigue loading interrupts stress relaxation around the crack tip and cause stress reinstatement, thereby accelerating crack growth compared with pure static loading. An effort is made to model crack growth rates under combined influence of creep and fatigue loading. The correlation with the stress intensity factor is found better when da/dt is used instead of da/dN. Both the linear summation rule and the dominant damage rule overestimate crack growth rates under creep-fatigue loading. A model is proposed to better correlate crack growth rates under creep-fatigue loading: 1 c f da da da dt dt dt Ψ −Ψ     =         , where Ψ is an exponent determined from damage under pure fatigue loading and pure creep loading. This model correlates crack growth rates for relatively small loads and low stress intensity factors. However, correlation becomes poor as the crack growth rate becomes large under a high level of load.


2021 ◽  
Author(s):  
Lidia Loiotine ◽  
Marco La Salandra ◽  
Gioacchino Francesco Andriani ◽  
Eliana Apicella ◽  
Michel Jaboyedoff ◽  
...  

<p><em>InfraRed Thermography</em> (IRT) spread quickly during the second half of the 20<sup>th</sup> century in the military, industrial and medical fields. This technique is at present widely used in the building sector to detect structural defects and energy losses. Being a non-destructive diagnostic technique, IRT was also introduced in the Earth Sciences, especially in the volcanology and environmental fields, yet its application for geostructural surveys is of recent development. Indeed, the acquisition of thermal images on rock masses could be an efficient tool for identifying fractures and voids, thus detecting signs of potential failures.<br>Further tests of thermal cameras on rock masses could help to evaluate the applicability, advantages and limits of the IRT technology for characterizing rock masses in different geological settings.<br>We present some results of IRT surveys carried out in the coastal area of Polignano a Mare (southern Italy), and their correlation with other remote sensing techniques (i.e. <em>Terrestrial Laser Scanning</em> and <em>Structure from Motion</em>). The case study (<em>Lama Monachile</em>) is represented by a 20 m-high cliff made up of Plio-Pleistocene calcarenites overlying Cretaceous limestones. Conjugate fracture systems, karst features, folds and faults, were detected in the rock mass during field surveys. In addition, dense vegetation and anthropogenic elements, which at places modified the natural setting of the rock mass, represent relevant disturbances for the characterization of the rock mass. In this context, IRT surveys were added to the other techniques, aimed at detecting the major discontinuities and fractured zones, based on potential thermal anomalies. <br>IRT surveys were carried out in December 2020 on the east side of the rock mass at <em>Lama Monachile</em> site. Thermal images were acquired every 20 minutes for 24 hours by means of a FLIR T-660 thermal imager mounted on a fixed tripod. Ambient air temperature and relative humidity were measured during the acquisition with a pocketsize thermo-hydrometer. A reflective paper was placed at the base of the cliff to measure the reflected apparent temperature. In addition, three thermocouple sensors were fixed to the different lithologic units of the rock face. These parameters, together with the distance between the FLIR T-660 and the rock face, were used in order to calibrate the thermal imager and correct the apparent temperatures recorded by the device, during the post-processing phase. Successively, vertical profiles showing the temperature of the rock face over time were extracted from the thermograms. Thermal anomalies were correlated with stratigraphic and Geological Strength Index profiles, obtained by means of field surveys and Structure from Motion techniques. The presence of fracture and voids in the rock mass was also investigated.</p>


Author(s):  
Christian Kontermann ◽  
Henning Almstedt ◽  
Falk Müller ◽  
Matthias Oechsner

Changes within the global energy market and a demand for a more flexible operation of gas- and steam-turbines leads to higher utilization of main components and raises the question how to deal with this challenge. One strategy to encounter this is to increase the accuracy of the lifetime assessment by quantifying and reducing conservatisms. At first the impact of considering a fracture mechanical notch support under creep-fatigue loading is studied by discussing the results of an extensive experimental program performed on notched round-bars under global strain control. A proposal how to consider this fracture mechanical notch support within a lifetime assessment is part of the discussion of the second part. Here, a theoretical FEM-based concept is introduced and validated by comparing the theoretical prediction with the results of the previously mentioned experimental study. Finally, the applicability of the developed and validated FEM-based procedure is demonstrated.


Author(s):  
J. Kusumoto ◽  
H. Watanabe ◽  
A. Kanaya ◽  
K. Ichikawa ◽  
S. Sakurai

In order to develop the life prediction method under creep-fatigue loading for gas turbine combustion transition piece, creep-fatigue tests were carried out on both as-received and aged Ni-based superalloy Nimonic 263. Crack initiation and propagation behaviors for the smooth specimen were observed. An unique relationship was obtained between life fraction and the maximum surface crack length under triangular wave shape loading tests, except the results for the trapezoidal wave loading tests. The latter results were due to the over estimation of the surface crack length at the crack initiation. These were caused from an oxide film break during straining. In the case of removing the oxide film before the measurement of surface crack, the relationship between life fraction and the maximum surface crack length obtained as unique relationship regardless of triangular and trapezoidal strain wave shapes. Using the life prediction method proposed, which is based on maximum surface crack length, the damage of combustion transition piece materials in service was evaluated.


Sign in / Sign up

Export Citation Format

Share Document