scholarly journals AIoT Used for COVID-19 Pandemic Prevention and Control

2021 ◽  
Vol 2021 ◽  
pp. 1-23
Author(s):  
Shu-Wen Chen ◽  
Xiao-Wei Gu ◽  
Jia-Ji Wang ◽  
Hui-Sheng Zhu

The pandemic of COVID-19 is continuing to wreak havoc in 2021, with at least 170 million victims around the world. Healthcare systems are overwhelmed by the large-scale virus infection. Luckily, Internet of Things (IoT) is one of the most effective paradigms in the intelligent world, in which the technology of artificial intelligence (AI), like cloud computing and big data analysis, is playing a vital role in preventing the spread of the pandemic of COVID-19. AI and 5G technologies are advancing by leaps and bounds, further strengthening the intelligence and connectivity of IoT applications, and conventional IoT has been gradually upgraded to be more powerful AI + IoT (AIoT). For example, in terms of remote screening and diagnosis of COVID-19 patients, AI technology based on machine learning and deep learning has recently upgraded medical equipment significantly and has reshaped the workflow with minimal contact with patients, so medical specialists can make clinical decisions more efficiently, providing the best protection not only to patients but also to specialists themselves. This paper reviews the latest progress made in combating COVID-19 with both IoT and AI and also provides comprehensive details on how to combat the pandemic of COVID-19 as well as the technologies that may be applied in the future.

Antiquity ◽  
2016 ◽  
Vol 90 (354) ◽  
pp. 1670-1680 ◽  
Author(s):  
Jane Kershaw ◽  
Ellen C. Røyrvik

The recently concluded ‘People of the British Isles’ project (hereafter PoBI) combined large-scale, local DNA sampling with innovative data analysis to generate a survey of the genetic structure of Britain in unprecedented detail; the results were presented by Leslie and colleagues in 2015. Comparing clusters of genetic variation within Britain with DNA samples from Continental Europe, the study elucidated past immigration events via the identification and dating of historic admixture episodes (the interbreeding of two or more different population groups). Among its results, the study found “no clear genetic evidence of the Danish Viking occupation and control of a large part of England, either in separate UK clusters in that region, or in estimated ancestry profiles”, therefore positing “a relatively limited input of DNA from the Danish Vikings”, with ‘Danish Vikings’ defined in the study, and thus in this article, as peoples migrating from Denmark to eastern England in the late ninth and early tenth centuries (Leslieet al.2015: 313). Here, we consider the details of certain assumptions that were made in the study, and offer an alternative interpretation to the above conclusion. We also comment on the substantial archaeological and linguistic evidence for a large-scale Danish Viking presence in England.


2021 ◽  
Author(s):  
Rachael Pung ◽  
Josh A Firth ◽  
Lewis G Spurgin ◽  
Vernon J Lee ◽  
Adam J Kucharski ◽  
...  

The emergence of the highly transmissible SARS-CoV-2 Delta variant has created a need to reassess the risk posed by increasing social contacts as countries resume pre-pandemic activities, particularly in the context of resuming large-scale events over multiple days. To examine how social contacts formed in different activity settings influences interventions required to control outbreaks, we combined high-resolution data on contacts among passengers and crew on cruise ships with network transmission models. We found passengers had a median of 20 (IQR 10-36) unique close contacts per day, and over 60% of their contact episodes were made in dining or sports areas where mask wearing is typically limited. In simulated outbreaks, we found that vaccination coverage and rapid antigen tests had a larger effect than mask mandates alone, indicating the importance of combined interventions against Delta to reduce event risk in the vaccine era.


2014 ◽  
Vol 875-877 ◽  
pp. 2174-2178
Author(s):  
Zhi Gang Liu

As an important foundational technology of the development of mechanical industry, the test technology plays a vital role in the assessment of product quality and performance. However, with the rapid development of technology, the rapid expansion of production scale and more and more revealed shortcomings of traditional mechanical engineering test means, it has been unable to meet the requirements of large-scale test. This article focuses on the test function demand of mechanical engineering objects and proposes a concept of independently selecting the hardware and software and modules and rapid reconfiguring to conduct control experiments, based on the analysis of control experimental platform needs, we determine the platform research and development program. And it describes the detailed design process in the respects of hardware and software related to the control platform.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2282
Author(s):  
Shikah J. Alsunaidi ◽  
Abdullah M. Almuhaideb ◽  
Nehad M. Ibrahim ◽  
Fatema S. Shaikh ◽  
Kawther S. Alqudaihi ◽  
...  

The COVID-19 epidemic has caused a large number of human losses and havoc in the economic, social, societal, and health systems around the world. Controlling such epidemic requires understanding its characteristics and behavior, which can be identified by collecting and analyzing the related big data. Big data analytics tools play a vital role in building knowledge required in making decisions and precautionary measures. However, due to the vast amount of data available on COVID-19 from various sources, there is a need to review the roles of big data analysis in controlling the spread of COVID-19, presenting the main challenges and directions of COVID-19 data analysis, as well as providing a framework on the related existing applications and studies to facilitate future research on COVID-19 analysis. Therefore, in this paper, we conduct a literature review to highlight the contributions of several studies in the domain of COVID-19-based big data analysis. The study presents as a taxonomy several applications used to manage and control the pandemic. Moreover, this study discusses several challenges encountered when analyzing COVID-19 data. The findings of this paper suggest valuable future directions to be considered for further research and applications.


2001 ◽  
Author(s):  
Bradley Olson ◽  
Leonard Jason ◽  
Joseph R. Ferrari ◽  
Leon Venable ◽  
Bertel F. Williams ◽  
...  

2020 ◽  
Vol 39 (4) ◽  
pp. 5449-5458
Author(s):  
A. Arokiaraj Jovith ◽  
S.V. Kasmir Raja ◽  
A. Razia Sulthana

Interference in Wireless Sensor Network (WSN) predominantly affects the performance of the WSN. Energy consumption in WSN is one of the greatest concerns in the current generation. This work presents an approach for interference measurement and interference mitigation in point to point network. The nodes are distributed in the network and interference is measured by grouping the nodes in the region of a specific diameter. Hence this approach is scalable and isextended to large scale WSN. Interference is measured in two stages. In the first stage, interference is overcome by allocating time slots to the node stations in Time Division Multiple Access (TDMA) fashion. The node area is split into larger regions and smaller regions. The time slots are allocated to smaller regions in TDMA fashion. A TDMA based time slot allocation algorithm is proposed in this paper to enable reuse of timeslots with minimal interference between smaller regions. In the second stage, the network density and control parameter is introduced to reduce interference in a minor level within smaller node regions. The algorithm issimulated and the system is tested with varying control parameter. The node-level interference and the energy dissipation at nodes are captured by varying the node density of the network. The results indicate that the proposed approach measures the interference and mitigates with minimal energy consumption at nodes and with less overhead transmission.


2016 ◽  
Vol 4 (2) ◽  
pp. 1-16
Author(s):  
Ahmed S. Khusheef

 A quadrotor is a four-rotor aircraft capable of vertical take-off and landing, hovering, forward flight, and having great maneuverability. Its platform can be made in a small size make it convenient for indoor applications as well as for outdoor uses. In model there are four input forces that are essentially the thrust provided by each propeller attached to each motor with a fixed angle. The quadrotor is basically considered an unstable system because of the aerodynamic effects; consequently, a close-loop control system is required to achieve stability and autonomy. Such system must enable the quadrotor to reach the desired attitude as fast as possible without any steady state error. In this paper, an optimal controller is designed based on a Proportional Integral Derivative (PID) control method to obtain stability in flying the quadrotor. The dynamic model of this vehicle will be also explained by using Euler-Newton method. The mechanical design was performed along with the design of the controlling algorithm. Matlab Simulink was used to test and analyze the performance of the proposed control strategy. The experimental results on the quadrotor demonstrated the effectiveness of the methodology used.


Author(s):  
О. Кravchuk ◽  
V. Symonenkov ◽  
I. Symonenkova ◽  
O. Hryhorev

Today, more than forty countries of the world are engaged in the development of military-purpose robots. A number of unique mobile robots with a wide range of capabilities are already being used by combat and intelligence units of the Armed forces of the developed world countries to conduct battlefield intelligence and support tactical groups. At present, the issue of using the latest information technology in the field of military robotics is thoroughly investigated, and the creation of highly effective information management systems in the land-mobile robotic complexes has acquired a new phase associated with the use of distributed information and sensory systems and consists in the transition from application of separate sensors and devices to the construction of modular information subsystems, which provide the availability of various data sources and complex methods of information processing. The purpose of the article is to investigate the ways to increase the autonomy of the land-mobile robotic complexes using in a non-deterministic conditions of modern combat. Relevance of researches is connected with the necessity of creation of highly effective information and control systems in the perspective robotic means for the needs of Land Forces of Ukraine. The development of the Armed Forces of Ukraine management system based on the criteria adopted by the EU and NATO member states is one of the main directions of increasing the effectiveness of the use of forces (forces), which involves achieving the principles and standards necessary for Ukraine to become a member of the EU and NATO. The inherent features of achieving these criteria will be the transition to a reduction of tasks of the combined-arms units and the large-scale use of high-precision weapons and land remote-controlled robotic devices. According to the views of the leading specialists in the field of robotics, the automation of information subsystems and components of the land-mobile robotic complexes can increase safety, reliability, error-tolerance and the effectiveness of the use of robotic means by standardizing the necessary actions with minimal human intervention, that is, a significant increase in the autonomy of the land-mobile robotic complexes for the needs of Land Forces of Ukraine.


2010 ◽  
Vol 108-111 ◽  
pp. 1158-1163 ◽  
Author(s):  
Peng Cheng Nie ◽  
Di Wu ◽  
Weiong Zhang ◽  
Yan Yang ◽  
Yong He

In order to improve the information management of the modern digital agriculture, combined several modern digital agriculture technologies, namely wireless sensor network (WSN), global positioning system (GPS), geographic information system (GIS) and general packet radio service (GPRS), and applied them to the information collection and intelligent control process of the modern digital agriculture. Combining the advantage of the local multi-channel information collection and the low-power wireless transmission of WSN, the stable and low cost long-distance communication and data transmission ability of GPRS, the high-precision positioning technology of the DGPS positioning and the large-scale field information layer-management technology of GIS, such a hybrid technology combination is applied to the large-scale field information and intelligent management. In this study, wireless sensor network routing nodes are disposed in the sub-area of field. These nodes have GPS receiver modules and the electric control mechanism, and are relative positioned by GPS. They can real-time monitor the field information and control the equipment for the field application. When the GPS position information and other collected field information are measured, the information can be remotely transmitted to PC by GPRS. Then PC can upload the information to the GIS management software. All the field information can be classified into different layers in GIS and shown on the GIS map based on their GPS position. Moreover, we have developed remote control software based on GIS. It can send the control commands through GPRS to the nodes which have control modules; and then we can real-time manage and control the field application. In conclusion, the unattended automatic wireless intelligent technology for the field information collection and control can effectively utilize hardware resources, improve the field information intelligent management and reduce the information and intelligent cost.


Sign in / Sign up

Export Citation Format

Share Document